Mapping the local variability of Natura 2000 habitats with remote sensing
暂无分享,去创建一个
Angela Lausch | Daniel Doktor | Hannes Feilhauer | Sebastian Schmidtlein | Stefanie Stenzel | Gundula Schulz | S. Schmidtlein | A. Lausch | H. Feilhauer | D. Doktor | Stefanie Stenzel | Carola Dahlke | Carola Dahlke | G. Schulz
[1] Roberta E. Martin,et al. A Tale of Two “Forests”: Random Forest Machine Learning Aids Tropical Forest Carbon Mapping , 2014, PloS one.
[2] J. Verrelst,et al. Mapping a priori defined plant associations using remotely sensed vegetation characteristics , 2014 .
[3] Caspar A. Mücher,et al. Quantifying structure of Natura 2000 heathland habitats using spectral mixture analysis and segmentation techniques on hyperspectral imagery , 2013 .
[4] Luis Alonso,et al. Multitemporal fusion of Landsat/TM and ENVISAT/MERIS for crop monitoring , 2013, Int. J. Appl. Earth Obs. Geoinformation.
[5] Stefan Erasmi. Habitat Mapping from Optical and SAR Satellite Data: Implications of Synergy and Uncertainty for Landscape Analysis Die Habitatkartierung aus Daten optischer und SAR-Satelliten: Synergieeffekte und Unsicherheiten bei der Analyse der Landschaft , 2013 .
[6] Duccio Rocchini,et al. ssessing floristic composition with multispectral sensors — A comparison based n monotemporal and multiseasonal field spectra , 2012 .
[7] Toon Spanhove,et al. Can remote sensing estimate fine-scale quality indicators of natural habitats? , 2012 .
[8] S. Schmidtlein,et al. Mapping plant strategy types using remote sensing , 2012 .
[9] F. Siegert,et al. Assessment of grassland use intensity by remote sensing to support conservation schemes , 2012 .
[10] A. P. Schaffers,et al. Too good to be true: pitfalls of using mean Ellenberg indicator values in vegetation analyses , 2012 .
[11] Matthias Drusch,et al. Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services , 2012 .
[12] Johannes R. Sveinsson,et al. Classification of Pansharpened Urban Satellite Images , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.
[13] Aggelos K. Katsaggelos,et al. A survey of classical methods and new trends in pansharpening of multispectral images , 2011, EURASIP J. Adv. Signal Process..
[14] T. Groen,et al. Spatial autocorrelation in predictors reduces the impact of positional uncertainty in occurrence data on species distribution modelling , 2011 .
[15] Caspar A. Mücher,et al. Integrating remote sensing in Natura 2000 habitat monitoring: prospects on the way forward , 2011 .
[16] Hannes Feilhauer,et al. On variable relations between vegetation patterns and canopy reflectance , 2011, Ecol. Informatics.
[17] J. Evans,et al. Modeling Species Distribution and Change Using Random Forest , 2011 .
[18] Hannes Feilhauer,et al. A brute-force approach to vegetation classification , 2010 .
[19] W. Verhoef,et al. PROSPECT+SAIL models: A review of use for vegetation characterization , 2009 .
[20] Birgit Kleinschmit,et al. Approaches to utilising QuickBird data for the monitoring of NATURA 2000 habitats , 2008 .
[21] J. Paruelo,et al. How to evaluate models : Observed vs. predicted or predicted vs. observed? , 2008 .
[22] R. G. Davies,et al. Methods to account for spatial autocorrelation in the analysis of species distributional data : a review , 2007 .
[23] Sebastian Schmidtlein,et al. Mapping the floristic continuum : Ordination space position estimated from imaging spectroscopy , 2007 .
[24] K. Pfitzner,et al. A standard design for collecting vegetation reference spectra: Implementation and implications for data sharing , 2006 .
[25] Nicolas H. Younan,et al. Quantitative analysis of pansharpened images , 2006 .
[26] M. Bock,et al. Object-oriented methods for habitat mapping at multiple scales – Case studies from Northern Germany and Wye Downs, UK , 2005 .
[27] S. Schmidtlein,et al. Mapping of continuous floristic gradients in grasslands using hyperspectral imagery , 2004 .
[28] Godela Rossner,et al. Mapping and indicator approaches for the assessment of habitats at different scales using remote sensing and GIS methods , 2004 .
[29] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[30] C. M. N. Panitz,et al. DATA FUSION OF SPOT PAN IMAGES AND LANDSAT TM FOR MAPPING RIO TAVARES'MANGROVE IN SANTA CATARINA ISLAND-BRAZIL , 2004 .
[31] H. Nagendra. Using remote sensing to assess biodiversity , 2001 .
[32] Roderick Hunt,et al. Allocating C-S-R plant functional types : a soft approach to a hard problem , 1999 .
[33] P. Fisher. The pixel: A snare and a delusion , 1997 .
[34] Sara Brogaard,et al. Ground-truths or Ground-lies? : environmental sampling for remote sensing application exemplified by vegetation cover data , 1997 .
[35] Giles M. Foody,et al. Fuzzy modelling of vegetation from remotely sensed imagery , 1996 .
[36] G. Foody. A fuzzy sets approach to the representation of vegetation continua from remotely sensed data : an example from lowland health , 1992 .
[37] Ruprecht Düll,et al. Zeigerwerte von Pflanzen in Mitteleuropa , 1992 .
[38] J. Kruskal. Nonmetric multidimensional scaling: A numerical method , 1964 .
[39] J. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .