SeaWiFS Ocean Aerosol Retrieval (SOAR): Algorithm, validation, and comparison with other data sets

[1] The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) provides a well-calibrated 13-year (1997–2010) record of top-of-atmosphere radiance, suitable for use in retrieval of atmospheric aerosol optical depth (AOD). This paper presents and validates a SeaWiFS Ocean Aerosol Retrieval (SOAR) algorithm, which retrieves the AOD at 550 nm and the partition of aerosol particle volume between fine and coarse modes. The algorithm has been applied over water to the whole SeaWiFS record. The data set includes quality flags to identify those retrievals suitable for quantitative use. SOAR has been validated against Aerosol Robotic Network (AERONET) and Maritime Aerosol Network (MAN) data and found to compare well (correlation 0.86 at 550 nm and 0.88 at 870 nm for AERONET, and 0.87 at 550 nm and 0.85 at 870 nm for MAN, using recommended quality control settings). These comparisons are used to identify the typical level of uncertainty on the AOD, estimated as 0.03 + 15% at 550 nm and 0.03 + 10% at 870 nm. The data set also includes the Angstrom exponent, although as expected this is noisy for low aerosol loadings (correlation 0.50; 0.78 for points where the AOD at 550 nm is 0.3 or more). Retrieved AOD is compared with colocated observations from other satellite sensors; regional and seasonal patterns are found to be common between all data sets, and differences generally linked to factors such as cloud screening and retrieval assumptions.

[1]  Alexander Smirnov,et al.  Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network , 2010 .

[2]  Yoram J. Kaufman,et al.  An Emerging Global Aerosol Climatology from the MODIS Satellite Sensors , 2008 .

[3]  P Koepke,et al.  Effective reflectance of oceanic whitecaps. , 1984, Applied optics.

[4]  Yoram J. Kaufman,et al.  MODIS Cloud screening for remote sensing of aerosols over oceans using spatial variability , 2002 .

[5]  Alexander Smirnov,et al.  Cloud-Screening and Quality Control Algorithms for the AERONET Database , 2000 .

[6]  Michael D. King,et al.  A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .

[7]  Peter R. J. North,et al.  The inter-comparison of major satellite aerosol retrieval algorithms using simulated intensity and polarization characteristics of reflected light , 2009 .

[8]  C. Cox Statistics of the sea surface derived from sun glitter , 1954 .

[9]  G. Thuillier,et al.  The Solar Spectral Irradiance from 200 to 2400 nm as Measured by the SOLSPEC Spectrometer from the Atlas and Eureca Missions , 2003 .

[10]  Alexei Lyapustin,et al.  Radiative transfer codes for atmospheric correction and aerosol retrieval: intercomparison study. , 2008, Applied optics.

[11]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[12]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[13]  David G. Streets,et al.  Light absorption by pollution, dust, and biomass burning aerosols: a global model study and evaluation with AERONET measurements , 2009 .

[14]  B. Franz,et al.  Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry. , 2007, Applied optics.

[15]  W. Munk,et al.  Measurement of the Roughness of the Sea Surface from Photographs of the Sun’s Glitter , 1954 .

[16]  R. Betts,et al.  Changes in Atmospheric Constituents and in Radiative Forcing. Chapter 2 , 2007 .

[17]  Ana Maria Silva,et al.  Some considerations about Ångström exponent distributions , 2007 .

[18]  Jean-François Léon,et al.  Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust , 2006 .

[19]  Alexander Smirnov,et al.  A Pure Marine Aerosol Model, for Use in Remote Sensing Applications , 2012 .

[20]  D. L. Nelson,et al.  Response to "Toward unified satellite climatology of aerosol properties. 3. MODIS versus MISR versus AERONET" , 2011 .

[21]  B. Stevens,et al.  Untangling aerosol effects on clouds and precipitation in a buffered system , 2009, Nature.

[22]  S. Platnick,et al.  Climate Data Records: A Modis Perspective , 2013 .

[23]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[24]  M. Mishchenko,et al.  Reprint of: T-matrix computations of light scattering by nonspherical particles: a review , 1996 .

[25]  John R. G. Townshend,et al.  The Global Climate Observing System (GCOS) , 1996 .

[26]  Roy G. Grainger,et al.  A sea surface reflectance model for (A)ATSR, and application to aerosol retrievals , 2010 .

[27]  Malgorzata Stramska,et al.  Observations of oceanic whitecaps in the north polar waters of the Atlantic , 2003 .

[28]  Xiaoxiong Xiong,et al.  Cross calibration of SeaWiFS and MODIS using on-orbit observations of the Moon. , 2011, Applied optics.

[29]  T. Eck,et al.  Global evaluation of the Collection 5 MODIS dark-target aerosol products over land , 2010 .

[30]  David J. Diner,et al.  Retrieval of aerosol properties over land using MISR observations , 2009 .

[31]  Bernard Pinty,et al.  Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging , 1998, IEEE Trans. Geosci. Remote. Sens..

[32]  Yoram J. Kaufman,et al.  Information on aerosol size distribution contained in solar reflected spectral radiances , 1996 .

[33]  Stephen J. Lord,et al.  The New Global Operational Analysis System at the National Meteorological Center , 1991 .

[34]  Robert Frouin,et al.  Maritime aerosol optical thickness measured by handheld sun photometers , 2004 .

[35]  André Morel,et al.  A multiple scattering algorithm for atmospheric correction of remotely sensed ocean colour (MERIS instrument): Principle and implementation for atmospheres carrying various aerosols including absorbing ones , 1999 .

[36]  Lorraine Remer,et al.  MISR Aerosol Product Attributes and Statistical Comparisons With MODIS , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[37]  D. Tanré,et al.  Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances , 1997 .

[38]  Jeffrey S. Reid,et al.  A decadal regional and global trend analysis of the aerosol optical depth using a data-assimilation grade over-water MODIS and Level 2 MISR aerosol products , 2010 .

[39]  T. Eck,et al.  Optical Properties of Atmospheric Aerosol in Maritime Environments , 2002 .

[40]  Stanford B. Hooker,et al.  An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series , 2004 .

[41]  B. Holben,et al.  Susceptibility of aerosol optical thickness retrievals to thin cirrus contamination during the BASE‐ASIA campaign , 2011 .

[42]  J. Reid,et al.  An over-land aerosol optical depth data set for data assimilation by filtering, correction, and aggregation of MODIS Collection 5 optical depth retrievals , 2010 .

[43]  T. Eck,et al.  Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols , 1999 .

[44]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[45]  Ziauddin Ahmad,et al.  New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans. , 2010, Applied optics.

[46]  Michael D. King,et al.  Aerosol properties over bright-reflecting source regions , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[47]  Olga V. Kalashnikova,et al.  Ability of multiangle remote sensing observations to identify and distinguish mineral dust types : Optical models and retrievals of optically thick plumes : Quantifying the radiative and biogeochemical impacts of mineral dust , 2005 .

[48]  Michael D. King,et al.  Deep Blue Retrievals of Asian Aerosol Properties During ACE-Asia , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[49]  L. Prieur,et al.  Analysis of variations in ocean color1 , 1977 .

[50]  K. Ruddick,et al.  Comparison of three SeaWiFS atmospheric correction algorithms for turbid waters using AERONET-OC measurements , 2011 .

[51]  A. Lacis,et al.  Past, present, and future of global aerosol climatologies derived from satellite observations: A perspective , 2007 .

[52]  David M. Winker,et al.  Mesoscale Variations of Tropospheric Aerosols , 2003 .

[53]  Jochen Landgraf,et al.  Retrieval of aerosol properties over land surfaces: capabilities of multiple-viewing-angle intensity and polarization measurements. , 2007, Applied optics.

[54]  Brent N. Holben,et al.  An analysis of the collection 5 MODIS over-ocean aerosol optical depth product for its implication in aerosol assimilation , 2010 .

[55]  Roy G. Grainger,et al.  Some implications of sampling choices on comparisons between satellite and model aerosol optical depth fields , 2010 .

[56]  Ralph A. Kahn,et al.  Detecting Thin Cirrus in Multiangle Imaging Spectroradiometer Aerosol Retrievals , 2010 .

[57]  R. W. Fenn,et al.  Optical Properties of the Atmosphere (Revised) , 1971 .

[58]  Richard Siddans,et al.  Oxford-RAL Aerosol and Cloud (ORAC): aerosol retrievals from satellite radiometers , 2009 .

[59]  Ferris Webster,et al.  Whitecap coverage from satellite measurements: A first step toward modeling the variability of oceanic whitecaps , 2006 .

[60]  C. McClain,et al.  SeaWiFS long-term solar diffuser reflectance and sensor noise analyses. , 2007, Applied optics.

[61]  Alexander Smirnov,et al.  Maritime Aerosol Network as a component of Aerosol Robotic Network , 2009 .

[62]  Alexander Smirnov,et al.  Maritime aerosol network as a component of AERONET - first results and comparison with global aerosol models and satellite retrievals , 2011 .

[63]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[64]  Lorraine Remer,et al.  A Critical Look at Deriving Monthly Aerosol Optical Depth From Satellite Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[65]  Yoram J. Kaufman,et al.  Dust transport and deposition observed from the Terra‐Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean , 2005 .

[66]  J. Dave Investigation of the effect of atmospheric dust on the determination of total ozone from the earth's ultraviolet reflectivity measurements , 1976 .

[67]  B. Holben,et al.  A spatio‐temporal approach for global validation and analysis of MODIS aerosol products , 2002 .

[68]  Jeffrey S. Reid,et al.  MODIS aerosol product analysis for data assimilation: Assessment of over‐ocean level 2 aerosol optical thickness retrievals , 2006 .