Light Logics and Optimal Reduction: Completeness and Complexity

Typing of lambda-terms in elementary and light affine logic (EAL , LAL resp.) has been studied for two different reasons: on the one hand the evaluation of typed terms using LAL (EAL resp.) proof-nets admits a guaranteed polynomial (elementary, resp.) bound; on the other hand these terms can also be evaluated by optimal reduction using the abstract version of Lamping's algorithm. The first reduction is global while the second one is local and asynchronous. We prove that for LAL (EAL resp.) typed terms, Lamping's abstract algorithm also admits a polynomial (elementary, resp.) bound. We also show its soundness and completeness (for EAL and LAL with type fixpoints), by using a simple geometry of interaction model (context semantics).

[1]  Harry G. Mairson,et al.  Parallel beta reduction is not elementary recursive , 1998, POPL '98.

[2]  Andrea Masini,et al.  Coherence for Sharing Proof Nets , 1996, RTA.

[3]  Ugo Dal Lago,et al.  Elementary Affine Logic and the Call-by-Value Lambda Calculus , 2005, TLCA.

[4]  Andrea Asperti,et al.  Intuitionistic Light Affine Logic , 2002, TOCL.

[5]  Paolo Coppola,et al.  Optimizing optimal reduction: A type inference algorithm for elementary affine logic , 2006, TOCL.

[6]  Martin Hofmann,et al.  Quantitative Models and Implicit Complexity , 2005, FSTTCS.

[7]  Olivier Laurent,et al.  Obsessional Cliques: A Semantic Characterization of Bounded Time Complexity , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[8]  Ugo Dal Lago Context Semantics, Linear Logic and Computational Complexity , 2005, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[9]  Thorsten Altenkirch,et al.  for Data: Differentiating Data Structures , 2005, Fundam. Informaticae.

[10]  Kazushige Terui,et al.  Light types for polynomial time computation in lambda-calculus , 2004, LICS 2004.

[11]  Kazushige Terui,et al.  Verification of Ptime Reducibility for System F Terms Via Dual Light Affine Logic , 2006, CSL.

[12]  Martín Abadi,et al.  The geometry of optimal lambda reduction , 1992, POPL '92.

[13]  Francesco Quaglia,et al.  A parallel implementation for optimal lambda-calculus reduction , 2000, PPDP '00.

[14]  Kazushige Terui,et al.  Light types for polynomial time computation in lambda-calculus , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[15]  Harry G. Mairson,et al.  Optimality and inefficiency: what isn't a cost model of the lambda calculus? , 1996, ICFP '96.

[16]  Andrea Asperti,et al.  The optimal implementation of functional programming languages , 1998, Cambridge tracts in theoretical computer science.

[17]  Andrea Asperti Light affine logic , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[18]  John Lamping,et al.  An algorithm for optimal lambda calculus reduction , 1989, POPL '90.

[19]  Vincent Danos,et al.  Reversible, Irreversible and Optimal lambda-Machines , 1999, Theor. Comput. Sci..

[20]  Paolo Coppola,et al.  (Optimal) duplication is not elementary recursive , 2000, POPL '00.

[21]  Vincent Danos,et al.  Proof-nets and the Hilbert space , 1995 .

[22]  Yves Lafont Interaction Combinators , 1997, Inf. Comput..

[23]  Harry G. Mairson From Hilbert Spaces to Dilbert Spaces: Context Semantics Made Simple , 2002, FSTTCS.

[24]  Kazushige Terui,et al.  A Feasible Algorithm for Typing in Elementary Affine Logic , 2005, TLCA.

[25]  Paolo Coppola,et al.  Principal Typing for Lambda Calculus in Elementary Affine Logic , 2004, Fundam. Informaticae.

[26]  Patrick Baillot,et al.  Elementary Complexity and Geometry of Interaction , 1999, Fundam. Informaticae.

[27]  Jean-Yves Girard,et al.  Light Linear Logic , 1998, Inf. Comput..

[28]  Rasmus Ejlers Møgelberg,et al.  Proceedings of the 22nd Annual IEEE Symposium on Logic in Computer Science , 2007 .

[29]  Paolo Coppola,et al.  (Optimal) duplication is not elementary recursive , 2004, Inf. Comput..

[30]  Andrzej S. Murawski,et al.  Discreet Games, Light Affine Logic and PTIME Computation , 2000, CSL.

[31]  Vincent Danos,et al.  Reversible, Irreversible and Optimal Lambda-machines , 1999, Linear Logic Tokyo Meeting.

[32]  Ugo Dal Lago,et al.  On light logics, uniform encodings and polynomial time , 2006, Math. Struct. Comput. Sci..

[33]  Jean-Yves Girard,et al.  Geometry of Interaction 1: Interpretation of System F , 1989 .

[34]  Andrea Masini,et al.  Coherence for sharing proof-nets , 2003, Theor. Comput. Sci..