Light Logics and Optimal Reduction: Completeness and Complexity
暂无分享,去创建一个
[1] Harry G. Mairson,et al. Parallel beta reduction is not elementary recursive , 1998, POPL '98.
[2] Andrea Masini,et al. Coherence for Sharing Proof Nets , 1996, RTA.
[3] Ugo Dal Lago,et al. Elementary Affine Logic and the Call-by-Value Lambda Calculus , 2005, TLCA.
[4] Andrea Asperti,et al. Intuitionistic Light Affine Logic , 2002, TOCL.
[5] Paolo Coppola,et al. Optimizing optimal reduction: A type inference algorithm for elementary affine logic , 2006, TOCL.
[6] Martin Hofmann,et al. Quantitative Models and Implicit Complexity , 2005, FSTTCS.
[7] Olivier Laurent,et al. Obsessional Cliques: A Semantic Characterization of Bounded Time Complexity , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).
[8] Ugo Dal Lago. Context Semantics, Linear Logic and Computational Complexity , 2005, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).
[9] Thorsten Altenkirch,et al. for Data: Differentiating Data Structures , 2005, Fundam. Informaticae.
[10] Kazushige Terui,et al. Light types for polynomial time computation in lambda-calculus , 2004, LICS 2004.
[11] Kazushige Terui,et al. Verification of Ptime Reducibility for System F Terms Via Dual Light Affine Logic , 2006, CSL.
[12] Martín Abadi,et al. The geometry of optimal lambda reduction , 1992, POPL '92.
[13] Francesco Quaglia,et al. A parallel implementation for optimal lambda-calculus reduction , 2000, PPDP '00.
[14] Kazushige Terui,et al. Light types for polynomial time computation in lambda-calculus , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..
[15] Harry G. Mairson,et al. Optimality and inefficiency: what isn't a cost model of the lambda calculus? , 1996, ICFP '96.
[16] Andrea Asperti,et al. The optimal implementation of functional programming languages , 1998, Cambridge tracts in theoretical computer science.
[17] Andrea Asperti. Light affine logic , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).
[18] John Lamping,et al. An algorithm for optimal lambda calculus reduction , 1989, POPL '90.
[19] Vincent Danos,et al. Reversible, Irreversible and Optimal lambda-Machines , 1999, Theor. Comput. Sci..
[20] Paolo Coppola,et al. (Optimal) duplication is not elementary recursive , 2000, POPL '00.
[21] Vincent Danos,et al. Proof-nets and the Hilbert space , 1995 .
[22] Yves Lafont. Interaction Combinators , 1997, Inf. Comput..
[23] Harry G. Mairson. From Hilbert Spaces to Dilbert Spaces: Context Semantics Made Simple , 2002, FSTTCS.
[24] Kazushige Terui,et al. A Feasible Algorithm for Typing in Elementary Affine Logic , 2005, TLCA.
[25] Paolo Coppola,et al. Principal Typing for Lambda Calculus in Elementary Affine Logic , 2004, Fundam. Informaticae.
[26] Patrick Baillot,et al. Elementary Complexity and Geometry of Interaction , 1999, Fundam. Informaticae.
[27] Jean-Yves Girard,et al. Light Linear Logic , 1998, Inf. Comput..
[28] Rasmus Ejlers Møgelberg,et al. Proceedings of the 22nd Annual IEEE Symposium on Logic in Computer Science , 2007 .
[29] Paolo Coppola,et al. (Optimal) duplication is not elementary recursive , 2004, Inf. Comput..
[30] Andrzej S. Murawski,et al. Discreet Games, Light Affine Logic and PTIME Computation , 2000, CSL.
[31] Vincent Danos,et al. Reversible, Irreversible and Optimal Lambda-machines , 1999, Linear Logic Tokyo Meeting.
[32] Ugo Dal Lago,et al. On light logics, uniform encodings and polynomial time , 2006, Math. Struct. Comput. Sci..
[33] Jean-Yves Girard,et al. Geometry of Interaction 1: Interpretation of System F , 1989 .
[34] Andrea Masini,et al. Coherence for sharing proof-nets , 2003, Theor. Comput. Sci..