Check Node Reliability-Based Scheduling for BP Decoding of Non-Binary LDPC Codes

Scheduling strategy is considered an important aspect of belief-propagation (BP) decoding of low-density parity-check (LDPC) codes because it affects the decoder's convergence rate, decoding complexity and error-correction performance. In this paper, we propose two new scheduling strategies for the BP decoding of non-binary LDPC (NB-LDPC) codes. Both the strategies are devised based on the concept of check node reliability and employ a heuristically defined threshold which can adapt to the communication channel variations. As the scheduling strategies only update a subset of the check nodes in each iteration, they result in reduced iteration cost. Furthermore, since the BP performs suboptimally for finite-length LDPC codes, especially for short-length LDPC codes, by enhancing the message propagation over the Tanner Graphs of short-length NB-LDPC codes, the new scheduling strategies can even improve the error-correction performances of BP decoding. Simulation results demonstrate that the new scheduling strategies provide good performance/complexity tradeoffs.

[1]  Qin Huang,et al.  Two Low-Complexity Reliability-Based Message-Passing Algorithms for Decoding Non-Binary LDPC Codes , 2010, IEEE Transactions on Communications.

[2]  Shie Mannor,et al.  Stochastic Decoding of LDPC Codes over GF(q) , 2013, IEEE Transactions on Communications.

[3]  Amir H. Banihashemi,et al.  Decoding low-density parity-check codes with probabilistic scheduling , 2001, IEEE Communications Letters.

[4]  Simon Litsyn,et al.  Efficient Serial Message-Passing Schedules for LDPC Decoding , 2007, IEEE Transactions on Information Theory.

[5]  Hongxin Song,et al.  Reduced-complexity decoding of Q-ary LDPC codes for magnetic recording , 2003 .

[6]  David Declercq,et al.  Low-complexity decoding for non-binary LDPC codes in high order fields , 2010, IEEE Transactions on Communications.

[7]  D.J.C. MacKay,et al.  Good error-correcting codes based on very sparse matrices , 1997, Proceedings of IEEE International Symposium on Information Theory.

[8]  Marco Chiani,et al.  Turbo Codes Based on Time-Variant Memory-1 Convolutional Codes over Fq , 2011, 2011 IEEE International Conference on Communications (ICC).

[9]  Khaled A. S. Abdel-Ghaffar,et al.  A unified approach to the construction of binary and nonbinary quasi-cyclic LDPC codes based on finite fields , 2009, IEEE Transactions on Communications.

[10]  Lara Dolecek,et al.  Ensemble analysis of pseudocodewords of protograph-based non-binary LDPC codes , 2011, 2011 IEEE Information Theory Workshop.

[11]  Hua Xiao,et al.  Graph-based message-passing schedules for decoding LDPC codes , 2004, IEEE Transactions on Communications.

[12]  D. Mackay,et al.  Low density parity check codes over GF(q) , 1998, 1998 Information Theory Workshop (Cat. No.98EX131).

[13]  David Declercq,et al.  Fast decoding algorithm for LDPC over GF(2/sup q/) , 2003, Proceedings 2003 IEEE Information Theory Workshop (Cat. No.03EX674).

[14]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .

[15]  S. Litsyn,et al.  An efficient message-passing schedule for LDPC decoding , 2004, 2004 23rd IEEE Convention of Electrical and Electronics Engineers in Israel.

[16]  Simon Litsyn,et al.  Lazy scheduling forLDPC decoding , 2007, IEEE Communications Letters.

[17]  Pierre Penard,et al.  Selective-Update Decoding of Non-Binary LDPC Codes , 2010, 2010 IEEE 71st Vehicular Technology Conference.

[18]  Marc P. C. Fossorier,et al.  Shuffled iterative decoding , 2005, IEEE Transactions on Communications.

[19]  Richard D. Wesel,et al.  LDPC Decoders with Informed Dynamic Scheduling , 2010, IEEE Transactions on Communications.

[20]  Ivan J. Fair,et al.  Low-density parity-check codes for space-time wireless transmission , 2006, IEEE Transactions on Wireless Communications.

[21]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[22]  D. Declercq,et al.  Fast Decoding Algorithm for LDPC over GF(2q) , 2003 .

[23]  Xingcheng Liu,et al.  An efficient dynamic schedule for layered belief-propagation decoding of LDPC codes , 2009, IEEE Communications Letters.