2D Cellular Automata with an Image Processing Application

This paper investigates the theoretical aspects of two-dimensional linear cellular automata with image applications. We consider geometrical and visual aspects of patterns generated by cellular automata evolution. The present work focuses on the theory of two-dimensional linear cellular automata with respect to uniform periodic and adiabatic boundary cellular automata conditions. Multiple copies of any arbitrary image corresponding to cellular automata nd so many applications in real life situation e.g. textile design, DNA genetics research, etc.

[1]  James A. Reggia,et al.  Self-replicating structures in a cellular automata space , 1997 .

[2]  Hasan Akin,et al.  Self-Replicating Patterns in 2D Linear Cellular Automata , 2014, Int. J. Bifurc. Chaos.

[3]  H. Akın,et al.  Structure and Reversibility of 2-dimensional Hexagonal Cellular Automata , 2010 .

[4]  Pabitra Pal Choudhury,et al.  Characterisation of a particular hybrid transformation of two-dimensional cellular automata , 1999 .

[5]  Hasan Akin,et al.  Structure and reversibility of 2D hexagonal cellular automata , 2011, Comput. Math. Appl..

[6]  Selman Uguz,et al.  Reversibility Algorithms for 3-State Hexagonal Cellular Automata with periodic Boundaries , 2013, Int. J. Bifurc. Chaos.

[7]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[8]  Pabitra Pal Choudhury,et al.  Theory and Applications of Two-dimensional, Null-boundary, Nine-Neighborhood, Cellular Automata Linear rules , 2008, ArXiv.

[9]  Hasan Akin On the directional entropy of Z2-actions generated by additive cellular automata , 2005, Appl. Math. Comput..

[10]  Pabitra Pal Choudhury,et al.  Matrix algebraic formulae concerning some exceptional rules of two-dimensional cellular automata , 2004, Inf. Sci..

[11]  Hasan Akin,et al.  Characterization of two-dimensional cellular automata over ternary fields , 2011, J. Frankl. Inst..

[12]  J. Gravner,et al.  Replication in one-dimensional cellular automata , 2011 .

[13]  Irfan Siap,et al.  On cellular automata over Galois rings , 2007, Inf. Process. Lett..

[14]  S. Wolfram Statistical mechanics of cellular automata , 1983 .