Combination Therapy with Sulfasalazine and Valproic Acid Promotes Human Glioblastoma Cell Death Through Imbalance of the Intracellular Oxidative Response

[1]  Shin Jung,et al.  Prognostic significance of E-cadherin and N-cadherin expression in Gliomas , 2017, BMC Cancer.

[2]  G. Lenz,et al.  Low Dose of Doxorubicin Potentiates the Effect of Temozolomide in Glioblastoma Cells , 2017, Molecular Neurobiology.

[3]  F. Ducray,et al.  The cost-effectiveness of tumor-treating fields therapy in patients with newly diagnosed glioblastoma. , 2016, Neuro-oncology.

[4]  Haijun Chen,et al.  Scaffold Repurposing of Old Drugs Towards New Cancer Drug Discovery. , 2016, Current topics in medicinal chemistry.

[5]  G. Lenz,et al.  A guide for the analysis of long-term population growth in cancer , 2016, Tumor Biology.

[6]  G. Reifenberger,et al.  The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary , 2016, Acta Neuropathologica.

[7]  G. Huberfeld,et al.  Seizures and gliomas — towards a single therapeutic approach , 2016, Nature Reviews Neurology.

[8]  M. Gilbert,et al.  Does Valproic Acid or Levetiracetam Improve Survival in Glioblastoma? A Pooled Analysis of Prospective Clinical Trials in Newly Diagnosed Glioblastoma. , 2016, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[9]  Yasuo Iwadate,et al.  Epithelial-mesenchymal transition in glioblastoma progression , 2016, Oncology letters.

[10]  B. Gidal,et al.  Antiepileptic drugs in patients with malignant brain tumor: beyond seizures and pharmacokinetics , 2016, Acta neurologica Scandinavica.

[11]  B. Zhivotovsky,et al.  Mitotic catastrophe and cancer drug resistance: A link that must to be broken. , 2016, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[12]  Mitchel S. Berger,et al.  Current and future strategies for treatment of glioma , 2016, Neurosurgical Review.

[13]  Thomas C. Chen,et al.  Maintenance Therapy With Tumor-Treating Fields Plus Temozolomide vs Temozolomide Alone for Glioblastoma: A Randomized Clinical Trial. , 2015, JAMA.

[14]  Yuan Cheng,et al.  Targeting the Mitotic Catastrophe Signaling Pathway in Cancer , 2015, Mediators of inflammation.

[15]  B. Beuthien-Baumann,et al.  Glioblastoma multiforme: emerging treatments and stratification markers beyond new drugs. , 2015, The British journal of radiology.

[16]  K. Camphausen,et al.  A Phase 2 Study of Concurrent Radiation Therapy, Temozolomide, and the Histone Deacetylase Inhibitor Valproic Acid for Patients With Glioblastoma. , 2015, International journal of radiation oncology, biology, physics.

[17]  Lan Ma,et al.  Towards automatic image analysis and assessment of the multicellular apoptosis process , 2015, IET Image Process..

[18]  J. Heggdal,et al.  Drug repurposing: sulfasalazine sensitizes gliomas to gamma knife radiosurgery by blocking cystine uptake through system Xc−, leading to glutathione depletion , 2015, Oncogene.

[19]  Meriem Bensalem-Owen,et al.  Pharmacokinetics and Clinical Utility of Valproic Acid Administered via Continuous Infusion , 2015, CNS Drugs.

[20]  Liu Yanhui,et al.  Survival analysis for valproic acid use in adult glioblastoma multiforme: A meta-analysis of individual patient data and a systematic review , 2014, Seizure.

[21]  J. Comella,et al.  Histone deacetylase inhibitors promote glioma cell death by G2 checkpoint abrogation leading to mitotic catastrophe , 2014, Cell Death and Disease.

[22]  E. Bongarzone,et al.  Vitamin C Transporters, Recycling and the Bystander Effect in the Nervous System: SVCT2 versus Gluts , 2014, Journal of stem cell research & therapy.

[23]  P. Bezecny Histone deacetylase inhibitors in glioblastoma: pre-clinical and clinical experience , 2014, Medical Oncology.

[24]  J. Bolaños,et al.  The oxidized form of vitamin C, dehydroascorbic acid, regulates neuronal energy metabolism , 2014, Journal of neurochemistry.

[25]  K. Hoang-Xuan,et al.  Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. , 2014, The New England journal of medicine.

[26]  R. Roesler,et al.  Inhibitory Activities of Trichostatin A in U87 Glioblastoma Cells and Tumorsphere-Derived Cells , 2014, Journal of Molecular Neuroscience.

[27]  J. Barnholtz-Sloan,et al.  CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. , 2012, Neuro-oncology.

[28]  L. Deangelis,et al.  Glioblastoma and other malignant gliomas: a clinical review. , 2013, JAMA.

[29]  P. Kalivas,et al.  The cystine/glutamate antiporter system x(c)(-) in health and disease: from molecular mechanisms to novel therapeutic opportunities. , 2013, Antioxidants & redox signaling.

[30]  R. Panizzutti,et al.  Astrocyte-induced Synaptogenesis Is Mediated by Transforming Growth Factor β Signaling through Modulation of d-Serine Levels in Cerebral Cortex Neurons* , 2012, The Journal of Biological Chemistry.

[31]  Manuel M. Oliveira,et al.  Nuclear Morphometric Analysis (NMA): Screening of Senescence, Apoptosis and Nuclear Irregularities , 2012, PloS one.

[32]  Yun Chen,et al.  Valproic acid affected the survival and invasiveness of human glioma cells through diverse mechanisms , 2012, Journal of Neuro-Oncology.

[33]  A. Matsumura,et al.  Valproic acid inhibits angiogenesis in vitro and glioma angiogenesis in vivo in the brain. , 2012, Neurologia medico-chirurgica.

[34]  J. M. May Vitamin C transport and its role in the central nervous system. , 2012, Sub-cellular biochemistry.

[35]  R A Knight,et al.  Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012 , 2011, Cell Death and Differentiation.

[36]  P. Sminia,et al.  Valproic acid sensitizes human glioma cells for temozolomide and γ-radiation , 2012, Journal of Neuro-Oncology.

[37]  A. Ambrósio,et al.  Nitric Oxide Modulates Sodium Vitamin C Transporter 2 (SVCT-2) Protein Expression via Protein Kinase G (PKG) and Nuclear Factor-κB (NF-κB)* , 2011, The Journal of Biological Chemistry.

[38]  R. Mirimanoff,et al.  Prolonged survival with valproic acid use in the EORTC/NCIC temozolomide trial for glioblastoma , 2011, Neurology.

[39]  Harald Sontheimer,et al.  Glutamate Release by Primary Brain Tumors Induces Epileptic Activity , 2011, Nature Medicine.

[40]  D. Steindler,et al.  The origins of glioma: E Pluribus Unum? , 2011, Glia.

[41]  P. Wen,et al.  Signal transduction inhibitors and antiangiogenic therapies for malignant glioma , 2011, Glia.

[42]  L. Mardones,et al.  The glucose transporter-2 (GLUT2) is a low affinity dehydroascorbic acid transporter. , 2011, Biochemical and biophysical research communications.

[43]  L. Galluzzi,et al.  Mitotic catastrophe: a mechanism for avoiding genomic instability , 2011, Nature Reviews Molecular Cell Biology.

[44]  Ching-Hsein Chen,et al.  Enhancement of temozolomide-induced apoptosis by valproic acid in human glioma cell lines through redox regulation , 2011, Journal of Molecular Medicine.

[45]  K. Hopkins,et al.  Temozolomide versus procarbazine, lomustine, and vincristine in recurrent high-grade glioma. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[46]  S. Loureiro,et al.  Homocysteine induces cytoskeletal remodeling and production of reactive oxygen species in cultured cortical astrocytes , 2010, Brain Research.

[47]  H. Sontheimer,et al.  Hypoxia Increases the Dependence of Glioma Cells on Glutathione* , 2010, The Journal of Biological Chemistry.

[48]  Stephen Yip,et al.  Molecular pathology in adult gliomas: diagnostic, prognostic, and predictive markers , 2010, The Lancet Neurology.

[49]  Zhongwu Chen,et al.  Autophagy induced by valproic acid is associated with oxidative stress in glioma cell lines. , 2010, Neuro-oncology.

[50]  P. Blower,et al.  Pharmacogenomic Approach Reveals a Role for the xc− Cystine/Glutamate Antiporter in Growth and Celastrol Resistance of Glioma Cell Lines , 2010, Journal of Pharmacology and Experimental Therapeutics.

[51]  Yan Leng,et al.  Multiple roles of HDAC inhibition in neurodegenerative conditions , 2009, Trends in Neurosciences.

[52]  H. Sontheimer,et al.  Sulfasalazine inhibits the growth of primary brain tumors independent of nuclear factor‐κB , 2009, Journal of neurochemistry.

[53]  E. Olson,et al.  Genetic dissection of histone deacetylase requirement in tumor cells , 2009, Proceedings of the National Academy of Sciences.

[54]  J. M. May,et al.  Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2. , 2009, Free radical biology & medicine.

[55]  C. Portugal,et al.  Glutamate receptors modulate sodium‐dependent and calcium‐independent vitamin C bidirectional transport in cultured avian retinal cells , 2009, Journal of neurochemistry.

[56]  P. V. van Diest,et al.  Valproic acid causes dose- and time-dependent changes in nuclear structure in prostate cancer cells in vitro and in vivo , 2008, Molecular Cancer Therapeutics.

[57]  L. Arregui,et al.  Valproic acid induces polarization, neuronal-like differentiation of a subpopulation of C6 glioma cells and selectively regulates transgene expression , 2008, Neuroscience.

[58]  B. Zhivotovsky,et al.  Death through a tragedy: mitotic catastrophe , 2008, Cell Death and Differentiation.

[59]  C. Chong,et al.  New uses for old drugs , 2007, Nature.

[60]  J. Wolff,et al.  Valproic acid induces p21 and topoisomerase-II (α/β) expression and synergistically enhances etoposide cytotoxicity in human glioblastoma cell lines , 2007, Journal of Neuro-Oncology.

[61]  G. Rosenberg,et al.  The mechanisms of action of valproate in neuropsychiatric disorders: can we see the forest for the trees? , 2007, Cellular and Molecular Life Sciences.

[62]  Jindrich Cinatl,et al.  Valproic acid as anti-cancer drug. , 2007, Current pharmaceutical design.

[63]  J. Abreu,et al.  Interactive properties of human glioblastoma cells with brain neurons in culture and neuronal modulation of glial laminin organization. , 2006, Differentiation; research in biological diversity.

[64]  Ting-Chao Chou,et al.  Theoretical Basis, Experimental Design, and Computerized Simulation of Synergism and Antagonism in Drug Combination Studies , 2006, Pharmacological Reviews.

[65]  G. Peterson,et al.  Valproate: a simple chemical with so much to offer , 2005, Journal of clinical pharmacy and therapeutics.

[66]  H. Sontheimer,et al.  Inhibition of Cystine Uptake Disrupts the Growth of Primary Brain Tumors , 2005, The Journal of Neuroscience.

[67]  D. Chuang The Antiapoptotic Actions of Mood Stabilizers , 2005 .

[68]  Martin J. van den Bent,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[69]  P. Black,et al.  In vitro and In vivo Activity of the Nuclear Factor-κB Inhibitor Sulfasalazine in Human Glioblastomas , 2004, Clinical Cancer Research.

[70]  A. Sood,et al.  Azathioprine versus sulfasalazine in maintenance of remission in severe ulcerative colitis. , 2003, Indian journal of gastroenterology : official journal of the Indian Society of Gastroenterology.

[71]  Su-Youne Chang,et al.  The Novel Neuroprotective Action of Sulfasalazine through Blockade of NMDA Receptors , 2003, Journal of Pharmacology and Experimental Therapeutics.

[72]  U. Lopes,et al.  Neurite outgrowth is impaired on HSP70-positive astrocytes through a mechanism that requires NF-κB activation , 2002, Brain Research.

[73]  S. Taniura,et al.  Histone acetylation may suppress human glioma cell proliferation when p21 WAF/Cip1 and gelsolin are induced. , 2002, Neuro-oncology.

[74]  N. Bruchovsky,et al.  Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the xc− cystine transporter: a new action for an old drug , 2001, Leukemia.

[75]  I. Simpson,et al.  Dehydroascorbic acid transport by GLUT4 in Xenopus oocytes and isolated rat adipocytes. , 2000, The Journal of biological chemistry.

[76]  S. Weremowicz,et al.  Human vitamin C (L-ascorbic acid) transporter SVCT1. , 2000, Biochemical and biophysical research communications.

[77]  R. Daruwala,et al.  Cloning and functional characterization of the human sodium‐dependent vitamin C transporters hSVCT1 and hSVCT2 , 1999, FEBS letters.

[78]  H. Sontheimer,et al.  Glioma cells release excitotoxic concentrations of glutamate. , 1999, Cancer research.

[79]  J. Wheless,et al.  Safety of rapid intravenous infusion of valproate loading doses in epilepsy patients , 1999, Epilepsy Research.

[80]  Taro Tokui,et al.  A family of mammalian Na+-dependent L-ascorbic acid transporters , 1999, Nature.

[81]  V. M. Neto,et al.  Thyroid hormone action on astroglial cells fromdistinct brain regions during development , 1998, International Journal of Developmental Neuroscience.

[82]  C. Burant,et al.  Glucose Transporter Isoforms GLUT1 and GLUT3 Transport Dehydroascorbic Acid* , 1997, The Journal of Biological Chemistry.

[83]  A. Meister Glutathione-ascorbic acid antioxidant system in animals. , 1994, The Journal of biological chemistry.

[84]  J. Cramer,et al.  A comparison of valproate with carbamazepine for the treatment of complex partial seizures and secondarily generalized tonic-clonic seizures in adults. The Department of Veterans Affairs Epilepsy Cooperative Study No. 264 Group. , 1992, The New England journal of medicine.

[85]  K. Negishi,et al.  A mechanism for glutamate toxicity in the C6 glioma cells involving inhibition of cystine uptake leading to glutathione depletion , 1992, Neuroscience.

[86]  S. Bannai Exchange of cystine and glutamate across plasma membrane of human fibroblasts. , 1986, The Journal of biological chemistry.

[87]  U. Klotz,et al.  Clinical Pharmacokinetics of Sulphasalazine, Its Metabolites and Other Prodrugs of 5-Aminosalicylic Acid , 1985, Clinical pharmacokinetics.