Filling the THz gap—high power sources and applications

Electromagnetic waves centred at a frequency of 1 THz lie between photonics on the one hand and electronics on the other, and are very hard to generate and detect. However, since the THz part of the spectrum is energetically equivalent to many important physical, chemical and biological processes including superconducting gaps and protein dynamical processes, it is of great interest to facilitate experimental research in this region. This has stimulated major steps in the past decade for filling this gap in the usable spectrum. In this review paper we describe the evolution of a new generation of sources that boost the average power available in the THz region by more than a million-fold, making this region routinely accessible for the first time. This is achieved using two enhancement factors, namely relativistic electrons and super-radiance. We will also point to the scientific potential for discovery that is now enabled in this region.

[1]  Corrected Article: Experimental observation of nonspherically-decaying radiation from a rotating superluminal source [J. Appl. Phys. 96, 4614 (2004)] , 2004 .

[2]  J. Stöhr,et al.  The ultimate speed of magnetic switching in granular recording media , 2004, Nature.

[3]  Charles A. Brau,et al.  Modern Problems in Classical Electrodynamics , 2003 .

[4]  Y. Mathis,et al.  Terahertz Radiation at ANKA, the New Synchrotron Light Source in Karlsruhe , 2003, Journal of biological physics.

[5]  P Kuske,et al.  Brilliant, coherent far-infrared (THz) synchrotron radiation. , 2003, Physical review letters.

[6]  Wayne R. McKinney,et al.  High-power terahertz radiation from relativistic electrons , 2002, Nature.

[7]  Xicheng Zhang,et al.  Materials for terahertz science and technology , 2002, Nature materials.

[8]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[9]  D. Tanner,et al.  Observation of coherent synchrotron radiation from the NSLS VUV ring , 2001 .

[10]  G. T. Fraser,et al.  Spontaneous Coherent Microwave Emission and the Sawtooth Instability in a Compact Storage Ring , 2001 .

[11]  E. Korte,et al.  Measured characteristics of infrared edge radiation from BESSY II , 2000 .

[12]  B. Nelander,et al.  Coherent synchrotron radiation in the far-infrared from a 1 mm electron bunch , 2000 .

[13]  Bohn,et al.  Sustained kilowatt lasing in a free-electron laser with same-cell energy recovery , 2000, Physical review letters.

[14]  R. A. Bosch,et al.  Focusing of infrared edge and synchrotron radiation , 1999 .

[15]  P. Roy,et al.  MAGNETIC FIELD DISCONTINUITY AS A NEW BRIGHTER SOURCE OF INFRARED SYNCHROTRON RADIATION , 1998 .

[16]  G. Krafft,et al.  Measurement of femtosecond electron bunches using a rf zero-phasing method , 1998 .

[17]  Infrared radiation from bending magnet edges in an electron storage ring , 1996 .

[18]  E. Crosson,et al.  Coherent spontaneous radiation from highly bunched electron beams , 1996 .

[19]  Hernandez,et al.  Observation of stimulated transition radiation. , 1996, Physical review letters.

[20]  P. Richards Bolometers for infrared and millimeter waves , 1994 .

[21]  Oepts,et al.  Coherent startup of an infrared free-electron laser. , 1993, Physical review letters.

[22]  K. Mima,et al.  Features of the compact photon storage ring , 1993 .

[23]  R. Pantell,et al.  Coherent emission and gain from a bunched electron beam , 1993 .

[24]  Gerald Ramian,et al.  The new UCSB free-electron lasers , 1992 .

[25]  Blum,et al.  Observation of coherent transition radiation. , 1991, Physical review letters.

[26]  K Wille,et al.  Synchrotron radiation sources , 1991 .

[27]  Williams,et al.  Multiparticle coherence calculations for synchrotron-radiation emission. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[28]  A. Robinson,et al.  The ALS — A third-generation light source , 1990 .

[29]  Shibata,et al.  Observation of coherent synchrotron radiation. , 1989, Physical review letters.

[30]  Kwang‐Je Kim,et al.  Characteristics of synchrotron radiation , 1989 .

[31]  C. Brau,et al.  Free-electron lasers , 2008 .

[32]  D. Kleinman,et al.  Cerenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media , 1984, Topical Meeting on Ultrafast Phenomena.

[33]  W. Duncan,et al.  Infrared synchrotron radiation from electron storage rings. , 1983, Applied optics.

[34]  The national synchrotron light source in the infrared region , 1982 .

[35]  A. Medvedev,et al.  Synchrotron Radiation from Ends of Straight-Linear Interval , 1981, IEEE Transactions on Nuclear Science.

[36]  A. van Steenbergen,et al.  The National Synchrotron Light Source basic design and project status , 1980 .

[37]  V. O. Kostroun,et al.  Simple numerical evaluation of modified Bessel functions Kν(x) of fractional order and the integral , 1980 .

[38]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[39]  M. Tigner,et al.  A possible apparatus for electron clashing-beam experiments , 1965 .

[40]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .

[41]  Julian Schwinger,et al.  On the Classical Radiation of Accelerated Electrons , 1949 .