Microfabrication techniques for trapped ion quantum information processing

Quantum-mechanical principles can be used to process information. In one approach, linear arrays of trapped, laser cooled ion qubits (two-level quantum systems) are confined in segmented multi-zone electrode structures. Strong Coulomb coupling between ions is the basis for quantum gates mediated by phonon exchange. Applications of Quantum Information Processing (QIP) include solution of problems believed to be intractable on classical computers. The ion trap approach to QIP requires trapping and control of numerous ions in electrode structures with many trapping zones. In support of trapped ion QIP, I investigated microfabrication of structures to trap, transport and couple large numbers of ions. Using 24Mg + I demonstrated loading and transport between zones in microtraps made of boron doped silicon. This thesis describes the fundamentals of ion trapping, the characteristics of silicon-based traps amenable to QIP work and apparatus to trap ions and characterize traps. Microfabrication instructions appropriate for nonexperts are included. A key characteristic of ion traps is the rate at which ion motional modes heat. In my traps upper bounds on heating were determined; however, heating due to externally injected noise could not be completely ruled out. Noise on the RF potential responsible for providing confinement was identified as one source of injected noise. Using the microfabrication technology developed for ion traps, I made a cantilevered micromechanical oscillator and with coworkers demonstrated a method to reduce the kinetic energy of its lowest order mechanical mode via its capacitive coupling to a driven RF resonant circuit. Cooling results from a RF capacitive force, which is phase shifted relative to the cantilever motion. The technique was demonstrated by cooling a 7 kHz fundamental mode from room temperature to 45 K. Ground state cooling of the mechanical modes of motion of harmonically trapped ions is routine; equivalent cooling of a macroscopic harmonic oscillator has not yet been demonstrated. Extension of this method to devices with higher motional frequencies in a cryogenic system, could enable ground state cooling and may prove simpler than related optical experiments. I also discuss an implementation of the semiclassical quantum Fourier transform (QFT) using three beryllium ion qubits. The QFT is a crucial step in a number of quantum algorithms including Shor's algorithm, a quantum approach to integer factorization which is exponentially faster than the fastest known classical factoring algorithm. This demonstration incorporated the key elements of a scalable ion-trap architecture for QIP.

[1]  E. Knill,et al.  Deterministic quantum teleportation of atomic qubits , 2004, Nature.

[2]  S. Olmschenk,et al.  Ion trap in a semiconductor chip , 2006 .

[3]  W. W. Macalpine,et al.  Coaxial Resonators with Helical Inner Conductor , 1959, Proceedings of the IRE.

[4]  M D Barrett,et al.  Quantum dense coding with atomic qubits. , 2004, Physical review letters.

[5]  H. Dehmelt,et al.  Radiofrequency Spectroscopy of Stored Ions I: Storage , 1968 .

[6]  Timothy F. Havel,et al.  NMR Based Quantum Information Processing: Achievements and Prospects , 2000, quant-ph/0004104.

[7]  E M Fortunato,et al.  Implementation of the quantum Fourier transform. , 2001, Physical review letters.

[8]  Theodor W. Hänsch,et al.  Doppler-Free Laser Polarization Spectroscopy , 1976 .

[9]  B. Garside Optical Resonance and Two-level Atoms , 1975 .

[10]  Devoe,et al.  Role of laser damping in trapped ion crystals. , 1989, Physical review. A, General physics.

[11]  Daniel L. Flamm,et al.  Mechanisms of silicon etching in fluorine- and chlorine-containing plasmas , 1990 .

[12]  W. Laycock The electronic engineer and the arms trade , 1979 .

[13]  Seth Lloyd,et al.  Quantum process tomography of the quantum Fourier transform. , 2004, The Journal of chemical physics.

[14]  F. Mintert,et al.  Ion-trap quantum logic using long-wavelength radiation. , 2001, Physical review letters.

[15]  Janus H. Wesenberg,et al.  Electrostatics of surface-electrode ion traps , 2008, 0808.1623.

[16]  Daniel Lynn Stick,et al.  Fabrication and Characterization of Semiconductor Ion Traps for Quantum Information Processing. , 2007 .

[17]  S. A. Lee,et al.  Interferometric real‐time display of cw dye laser wavelength with sub‐Doppler accuracy , 1976 .

[18]  A. Kapitulnik,et al.  Feedback Control and Characterization of a Microcantilever Using Optical Radiation Pressure , 2006 .

[19]  S. F. Actory,et al.  Personal correspondence , 1997 .

[20]  T J Kippenberg,et al.  Theory of ground state cooling of a mechanical oscillator using dynamical backaction. , 2007, Physical review letters.

[21]  M. A. Rowe,et al.  Heating of trapped ions from the quantum ground state , 2000 .

[22]  J. Britton,et al.  Quantum information processing with trapped ions , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[23]  Jaehyun Kim,et al.  Implementation of phase estimation and quantum counting algorithms on an NMR quantum-information processor , 2002 .

[24]  D. Preston Doppler-free saturated absorption: Laser spectroscopy , 1996 .

[25]  R. Jozsa,et al.  Quantum Computation and Shor's Factoring Algorithm , 1996 .

[26]  E. Knill,et al.  Transport quantum logic gates for trapped ions , 2007, 0707.3646.

[27]  David Issadore,et al.  Integrated circuit/microfluidic chip to programmably trap and move cells and droplets with dielectrophoresis. , 2008, Lab on a chip.

[28]  Wineland,et al.  Laser cooling to the zero-point energy of motion. , 1989, Physical review letters.

[29]  C Langer,et al.  Experimental demonstration of a technique to generate arbitrary quantum superposition states of a harmonically bound spin-1/2 particle. , 2003, Physical review letters.

[30]  P. Woias,et al.  Planar multipole ion trap , 2007, 0712.1587.

[31]  C Langer,et al.  Hyperfine coherence in the presence of spontaneous photon scattering. , 2005, Physical review letters.

[32]  C. Monroe,et al.  Cooling the Collective Motion of Trapped Ions to Initialize a Quantum Register , 1998, quant-ph/9803023.

[33]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[34]  Andrew M. Steane The ion trap quantum information processor , 1996 .

[35]  R. B. Blakestad,et al.  Fluorescence during Doppler cooling of a single trapped atom , 2007, 0707.1314.

[36]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[37]  J. Wesenberg Ideal intersections for radio-frequency trap networks , 2008, 0802.3162.

[38]  Harold Metcalf,et al.  Laser Cooling and Trapping , 1999, Peking University-World Scientific Advanced Physics Series.

[39]  F. E. Terman,et al.  Radio Engineers Handbook , 1943 .

[40]  K. R. Brown,et al.  Experimental investigation of planar ion traps , 2005, quant-ph/0511018.

[41]  King,et al.  Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy. , 1995, Physical review letters.

[42]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[43]  M. Misono,et al.  DOPPLER-FREE HIGH RESOLUTION SPECTRAL ATLAS OF IODINE MOLECULE 15,000 TO $19,000 CM^{-1}$ , 2000 .

[44]  Serrita A. McAuley,et al.  Silicon micromachining using a high-density plasma source , 2001 .

[45]  Griffiths,et al.  Semiclassical Fourier transform for quantum computation. , 1995, Physical review letters.

[46]  K. Vahala,et al.  Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction , 2006 .

[47]  C. Monroe,et al.  A “Schrödinger Cat” Superposition State of an Atom , 1996, Science.

[48]  J. Britton,et al.  A microfabricated surface-electrode ion trap in silicon , 2006 .

[49]  Andrew M. Steane,et al.  How to build a 300 bit, 1 Giga-operation quantum computer , 2004, Quantum Inf. Comput..

[50]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[51]  D. Kajfez Q factor measurements, analog and digital 1 , 1999 .

[52]  D. Coppersmith An approximate Fourier transform useful in quantum factoring , 2002, quant-ph/0201067.

[53]  Carlton M. Caves,et al.  Quantum-Mechanical Radiation-Pressure Fluctuations in an Interferometer , 1980 .

[54]  C Langer,et al.  Long-lived qubit memory using atomic ions. , 2005, Physical review letters.

[55]  D. Stick,et al.  Planar ion trap geometry for microfabrication , 2004 .

[56]  T. Hänsch,et al.  High power all solid state laser system near 280 nm , 2006 .

[57]  E. Knill,et al.  Realization of quantum error correction , 2004, Nature.

[58]  C Langer,et al.  Spectroscopy Using Quantum Logic , 2005, Science.

[59]  F. Schmidt-Kaler,et al.  Quantum State Engineering on an Optical Transition and Decoherence in a Paul Trap , 1999 .

[60]  H J Mamin,et al.  Feedback cooling of a cantilever's fundamental mode below 5 mK. , 2007, Physical review letters.

[61]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[62]  Huma Ashraf,et al.  Advanced silicon etching using high-density plasmas , 1995, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[63]  J. Britton,et al.  Errors in trapped-ion quantum gates due to spontaneous photon scattering , 2006, quant-ph/0611048.

[64]  M Pinard,et al.  High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. , 2006, Physical review letters.

[65]  F. L. Walls,et al.  Radiation-Pressure Cooling of Bound Resonant Absorbers , 1978 .

[66]  C. Kittel Introduction to solid state physics , 1954 .

[67]  P. J. Fox,et al.  A reliable, compact, and low-cost Michelson wavemeter for laser wavelength measurement , 1999 .

[68]  Kenneth R. Brown,et al.  Loading and characterization of a printed-circuit-board atomic ion trap , 2006, quant-ph/0603142.

[69]  R. B. Blakestad,et al.  Microfabricated surface-electrode ion trap for scalable quantum information processing. , 2006, Physical review letters.

[70]  G. Arfken Mathematical Methods for Physicists , 1967 .

[71]  J. Britton,et al.  Microfabricated Chip Traps for Ions , 2008, 0812.3907.

[72]  Samuel Y. Liao,et al.  Microwave Devices and Circuits , 1980 .

[73]  U. Gösele,et al.  A Model for the Silicon Wafer Bonding Process , 1989 .

[74]  E. Knill,et al.  Experimental purification of two-atom entanglement , 2006, Nature.

[75]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[76]  B. Bodermann,et al.  High precision description of the rovibronic structure of the I$\mathsf{_2}$ B-X spectrum , 2004 .

[77]  G. Losurdo,et al.  AIR BAKE-OUT TO REDUCE HYDROGEN OUTGASSING FROM STAINLESS STEEL , 1998 .

[78]  J M Amini,et al.  High-fidelity transport of trapped-ion qubits through an X-junction trap array. , 2009, Physical review letters.

[79]  Robert M. Jopson,et al.  System design for large-scale ion trap quantum information processor , 2005, Quantum Inf. Comput..

[80]  Christopher Monroe,et al.  Remapping the quantum frontier , 2008 .

[81]  Van Dyck,et al.  New high-precision comparison of electron and positron g factors. , 1987, Physical review letters.

[82]  D. Leibfried,et al.  Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate , 2003, Nature.

[83]  Bernard Yurke,et al.  Modeling ion trap thermal noise decoherence , 2007, Quantum Inf. Comput..

[84]  Florian Marquardt,et al.  Quantum theory of cavity-assisted sideband cooling of mechanical motion. , 2007, Physical review letters.

[85]  Hans-Jürgen Butt,et al.  Calculation of thermal noise in atomic force microscopy , 1995 .

[86]  Farzin Haque,et al.  Effect of surface treatment on diffusion and domain formation in supported lipid bilayers. , 2007, Biophysical journal.

[87]  Benjamin L. Lev,et al.  Magnetic microtraps for cavity QED, Bose-Einstein condensates, and atom optics , 2006 .

[88]  A. B. Manukin,et al.  Measurement of Weak Forces in Physics Experiments , 1977 .

[89]  S. Gigan,et al.  Self-cooling of a micromirror by radiation pressure , 2006, Nature.

[90]  C. Fuchs Distinguishability and Accessible Information in Quantum Theory , 1996, quant-ph/9601020.

[91]  King,et al.  Generation of nonclassical motional states of a trapped atom. , 1996, Physical review letters.

[92]  J. J. Thomson,et al.  Conduction of electricity through gases , 1903 .

[93]  Robert Puers,et al.  Bonding wafers with sodium silicate solution , 1997 .

[94]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[95]  K. Ng,et al.  The Physics of Semiconductor Devices , 2019, Springer Proceedings in Physics.

[96]  H. Card,et al.  Aluminum—Silicon Schottky barriers and ohmic contacts in integrated circuits , 1976, IEEE Transactions on Electron Devices.

[97]  K. Mølhave,et al.  Formation of translationally cold MgH + and MgD + molecules in an ion trap , 2000 .

[98]  W. Paul Electromagnetic traps for charged and neutral particles , 1990 .

[99]  M. Pinard,et al.  Cooling of a Mirror by Radiation Pressure , 1999 .

[100]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[101]  R. Lathe Phd by thesis , 1988, Nature.

[102]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[103]  David Kielpinski,et al.  Entanglement and decoherence in a trapped-ion quantum register , 2001 .

[104]  I. Chuang,et al.  Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.

[105]  David J. Wineland,et al.  High-resolution optical spectra of laser cooled ions , 1980 .

[106]  E. Knill,et al.  Quantum control, quantum information processing, and quantum-limited metrology with trapped ions , 2005 .

[107]  David J. Wineland,et al.  Minimization of ion micromotion in a Paul trap , 1998 .

[108]  J. G. Harris,et al.  Stable, mode-matched, medium-finesse optical cavity incorporating a microcantilever mirror: optical characterization and laser cooling. , 2006, The Review of scientific instruments.

[109]  Eric Fawcett,et al.  Spin-density-wave antiferromagnetism in chromium , 1988 .

[110]  K. Fernow New York , 1896, American Potato Journal.

[111]  C. Monroe,et al.  Scaling and suppression of anomalous heating in ion traps. , 2006, Physical review letters.

[112]  L. Deslauriers,et al.  T-junction ion trap array for two-dimensional ion shuttling, storage, and manipulation , 2005, quant-ph/0508097.

[113]  Michael L. Roukes,et al.  Putting mechanics into quantum mechanics , 2005 .

[114]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[115]  Experiments with an isolated subatomic particle ar rest , 1990 .

[116]  S. Stenholm,et al.  Laser cooling and trapping , 1988 .

[117]  J. Miranda,et al.  Biot-Savart-like law in electrostatics , 2000, physics/0011015.

[118]  Andrew M. Steane,et al.  Electrode configurations for fast separation of trapped ions , 2004, Quantum Inf. Comput..

[119]  L M Vandersypen,et al.  Experimental realization of an order-finding algorithm with an NMR quantum computer. , 2000, Physical review letters.

[120]  F. Schmidt-Kaler,et al.  Transport of ions in a segmented linear Paul trap in printed-circuit-board technology , 2007, 0711.2947.

[121]  Khaled Karrai,et al.  Cavity cooling of a microlever , 2004, Nature.

[122]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[123]  G. Boyd,et al.  Parametric Interaction of Focused Gaussian Light Beams , 1968 .

[124]  M D Barrett,et al.  Implementation of the Semiclassical Quantum Fourier Transform in a Scalable System , 2005, Science.

[125]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[126]  U. Gösele,et al.  SemiConductor Wafer Bonding: Science and Technology , 1998 .

[127]  O. Gühne,et al.  03 21 7 2 3 M ar 2 00 6 Scalable multi-particle entanglement of trapped ions , 2006 .

[128]  H. Walther,et al.  Phase transitions of stored laser-cooled ions , 1988, Nature.

[129]  R. B. Blakestad,et al.  Creation of a six-atom ‘Schrödinger cat’ state , 2005, Nature.

[130]  E. Knill,et al.  Simplified motional heating rate measurements of trapped ions , 2007, 0707.1528.

[131]  Chang Liu,et al.  Foundations of MEMS , 2006 .

[132]  M. D. LaHaye,et al.  Cooling a nanomechanical resonator with quantum back-action , 2006, Nature.

[133]  B. Bodermann,et al.  Widely usable interpolation formulae for hyperfine splittings in the 127I2 spectrum , 2002 .

[134]  G. Wallis,et al.  Field Assisted Glass‐Metal Sealing , 1969 .

[135]  D. Bouwmeester Sub-kelvin optical cooling of a micromechanical resonator , 2007 .

[136]  M. Madou Fundamentals of microfabrication : the science of miniaturization , 2002 .

[137]  T. Hänsch,et al.  Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity , 1980 .

[138]  David Leibrandt,et al.  Suppression of heating rates in cryogenic surface-electrode ion traps. , 2007, Physical review letters.

[139]  Bell,et al.  Coaxial-resonator-driven rf (Paul) trap for strong confinement. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[140]  K. Birnbaum Cavity QED with multilevel atoms , 2005 .

[141]  Jr.,et al.  Efficient photoionization loading of trapped ions with ultrafast pulses , 2006, quant-ph/0608043.

[142]  E.S. Purington Single- and Coupled-Circuit Systems , 1930, Proceedings of the Institute of Radio Engineers.

[143]  K. R. Williams,et al.  Etch rates for micromachining processing-Part II , 2003 .

[144]  Christian Kurtsiefer,et al.  Experimental study of anomalous heating and trap instabilities in a microscopic 137 Ba ion trap , 2002 .