Enhanced electrochemical enantiorecognition of tryptophan enantiomers based on synergistic effect of porous β-CD-containing polymers and multiwalled carbon nanotubes

[1]  Gaochao Fan,et al.  A chiral helical self-assembly for electrochemical recognition of tryptophan enantiomers , 2019, Electrochemistry Communications.

[2]  G. Zhu,et al.  Electrochemical recognition of tryptophan enantiomers using a multi-walled carbon nanotube@polydopamine composite loaded with copper(II) , 2019, Microchimica Acta.

[3]  Ruibin Guo,et al.  Perylene-functionalized graphene sheets modified with chitosan for voltammetric discrimination of tryptophan enantiomers , 2019, Microchimica Acta.

[4]  G. Zhu,et al.  Review—Recent Advances in Electrochemical Chiral Recognition , 2019, Journal of The Electrochemical Society.

[5]  Yehia M. Ibrahim,et al.  Distinguishing enantiomeric amino acids with chiral cyclodextrin adducts and structures for lossless ion manipulations , 2018, Electrophoresis.

[6]  Yong Yan,et al.  β-Cyclodextrin Functionalized Nanoporous Graphene Oxides for Efficient Resolution of Asparagine Enantiomers. , 2018, Chemistry, an Asian journal.

[7]  Jing Zhang,et al.  Fabrication of a porous β-cyclodextrin-polymer-coated solid-phase microextraction fiber for the simultaneous determination of five contaminants in water using gas chromatography-mass spectrometry , 2018, RSC advances.

[8]  Chiyang He,et al.  Simultaneous Solid-Phase Extraction and Determination of Three Bisphenols in Water Samples and Orange Juice by a Porous β-Cyclodextrin Polymer , 2018, Food Analytical Methods.

[9]  Pramod K. Kalambate,et al.  Enantioselective analysis of Moxifloxacin hydrochloride enantiomers with graphene-β-Cyclodextrin-nanocomposite modified carbon paste electrode using adsorptive stripping differential pulse Voltammetry , 2017 .

[10]  Amanpreet Singh,et al.  A chemosensor selection for the fluorescence identification of tryptophan (Trp) amino acids in aqueous solutions with nanomolar detection , 2017 .

[11]  M. Schloter,et al.  D‐tryptophan from probiotic bacteria influences the gut microbiome and allergic airway disease , 2017, The Journal of allergy and clinical immunology.

[12]  Shan Huang,et al.  Novel N-Doped Carbon Dots/β-Cyclodextrin Nanocomposites for Enantioselective Recognition of Tryptophan Enantiomers , 2016, Sensors.

[13]  Juanjuan Xu,et al.  Chiral Recognition of Tryptophan Enantiomers Based on β‐Cyclodextrin‐platinum Nanoparticles/Graphene Nanohybrids Modified Electrode , 2016 .

[14]  William R. Dichtel,et al.  Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer , 2015, Nature.

[15]  Huaiguo Xue,et al.  Chiral Recognition of d-Tryptophan by Confining High-Energy Water Molecules Inside the Cavity of Copper-Modified β-Cyclodextrin , 2015 .

[16]  G. Lazzara,et al.  Cyclodextrin–calixarene co-polymers as a new class of nanosponges , 2014 .

[17]  Baoxin Li,et al.  Colorimetric chiral discrimination and determination of enantiometric excess of D/L-tryptophan using silver nanoparticles , 2014, Microchimica Acta.

[18]  J. Nan,et al.  Electrochemical chiral recognition of tryptophan using a glassy carbon electrode modified with β-cyclodextrin and graphene , 2014, Microchimica Acta.

[19]  Y. Sha,et al.  Temperature-sensitive electrochemical recognition of tryptophan enantiomers based on β-cyclodextrin self-assembled on poly(L-glutamic acid). , 2014, Analytical chemistry.

[20]  G. Crini,et al.  Environmental applications of water-insoluble β-cyclodextrin–epichlorohydrin polymers , 2013 .

[21]  A. Rodriguez,et al.  Erratum to: Assays of the Amino Acid Tryptophan in Cherries by HPLC-Fluorescence , 2011 .

[22]  L. Song,et al.  Push–pull effect and synergistic discrimination of β-cyclodextrin and 18-crown-6 , 2011 .

[23]  E. Christodoulou An Overview of HPLC Methods for the Enantiomer Separation of Active Pharmaceutical Ingredients in Bulk and Drug Formulations , 2010 .

[24]  C. Barriga,et al.  Assays of the Amino Acid Tryptophan in Cherries by HPLC-Fluorescence , 2010 .

[25]  Huaihe Song,et al.  Preparation and electrochemical properties of composites of carbon nanotubes loaded with Ag and TiO2 nanoparticle for use as anode material in lithium-ion batteries , 2008 .

[26]  Lun Wang,et al.  Overoxidized polypyrrole film directed single-walled carbon nanotubes immobilization on glassy carbon electrode and its sensing applications. , 2007, Biosensors & bioelectronics.

[27]  A. Salimi,et al.  Modification of glassy carbon electrode with multi-walled carbon nanotubes and iron(III)-porphyrin film: Application to chlorate, bromate and iodate detection , 2007 .

[28]  D. Haynie,et al.  Chiral Drug Separation , 2005 .

[29]  Itamar Willner,et al.  Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[30]  B. Sébille,et al.  Insight into the chiral recognition of warfarin enantiomers by epichlorhydrin/beta-cyclodextrin polymer-based supports: determination of stoichiometry and stability of warfarin/beta-cyclodextrin polymer complexes. , 2002, Journal of biochemical and biophysical methods.

[31]  Malcolm L. H. Green,et al.  A simple chemical method of opening and filling carbon nanotubes , 1994, Nature.

[32]  H. Meltzer,et al.  Relationships between lower plasma L-tryptophan levels and immune-inflammatory variables in depression , 1993, Psychiatry Research.

[33]  P. Blockx,et al.  Hypothalamic‐pituitary‐adrenal and ‐thyroid axis dysfunctions and decrements in the availability of L‐tryptophan as biological markers of suicidal ideation in major depressed females , 1989, Acta psychiatrica Scandinavica.

[34]  S. Talapatra,et al.  Chiral Recognition in Biological Systems and Natural Chiral Auxiliaries , 2015 .

[35]  M. Trojanowicz Enantioselective electrochemical sensors and biosensors: A mini-review , 2014 .

[36]  N. Grinberg,et al.  Chiral separations. , 2010, Annual review of analytical chemistry.

[37]  D. Schneider-Helmert,et al.  Evaluation of l-tryptophan for treatment of insomnia: A review , 2004, Psychopharmacology.

[38]  S. Fanali,et al.  Enantiomer resolution by using capillary zone electrophoresis: Resolution of racemic tryptophan and determination of the enantiomer composition of commercial pharmaceutical epinephrine , 1990, Electrophoresis.