Operation of a microgrid with optimal power assignment at the generation nodes

An optimization method is used for determining the electric power to be supplied at the different nodes of a microgrid with the aim of reducing generation costs, losses by electricity transmission, and greenhouse gas emissions, while simultaneously maintaining the energy quality at all points of supply. The optimization problem is complex due to the various restrictions inherent to the distributed energy resources in the microgrid. The generation sources include diesel engines, photovoltaic panels, wind turbines, and fuel cells, each of them conveniently represented by specific mathematical models. Simulation examples are presented for both island and non-island operation modes. The problem is solved through a particle swarm optimization algorithm that efficiently provides acceptable solutions.

[1]  Centro de Investigación,et al.  Solución del problema de flujos de potencia óptimo con restricciones de seguridad por un optimizador de partículas modificado , 2007 .

[2]  P. K. Roy,et al.  Biogeography Based Optimization Approach for Optimal Power Flow Problem Considering Valve Loading Effects , 2010 .

[3]  R. Amarnath STATE OF ART IN OPTIMAL POWER FLOWSOLUTION METHODOLOGIES , 2011 .

[4]  Mohamed E. El-Hawary,et al.  A Survey of Particle Swarm Optimization Applications in Electric Power Systems , 2009, IEEE Transactions on Evolutionary Computation.

[5]  Jong-Yul Kim,et al.  A Modified Particle Swarm Optimization for Optimal Power Flow , 2007 .

[6]  Estrella Parra,et al.  Análisis de sistemas de potencia con Matlab , 1998 .

[7]  D. Zhang,et al.  Optimal design and planning of energy microgrids , 2014 .

[8]  E. Prempain,et al.  An improved particle swarm optimization for optimal power flow , 2004, 2004 International Conference on Power System Technology, 2004. PowerCon 2004..

[9]  Pandian Vasant,et al.  Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance , 2012 .

[10]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[11]  K. Pandya,et al.  A SURVEY OF OPTIMAL POWER FLOW , 2008 .

[12]  S. Chowdhury,et al.  Microgrids and Active Distribution Networks , 2009 .

[13]  M. E. El-Hawary,et al.  Enhanced particle swarm optimization approach for solving the non-convex optimal power flow , 2010 .

[14]  M. E. El-Hawary,et al.  Applications of computational intelligence techniques for solving the revived optimal power flow problem , 2009 .

[15]  J. Jardini,et al.  Daily load profiles for residential, commercial and industrial low voltage consumers , 2000 .

[16]  Enrique Kremers,et al.  A Complex Systems Modelling Approach for Decentralised Simulation of Electrical Microgrids , 2010, 2010 15th IEEE International Conference on Engineering of Complex Computer Systems.

[17]  Steffen Rebennack,et al.  Optimal power flow: a bibliographic survey I , 2012, Energy Systems.

[18]  Faisal A. Mohamed,et al.  Microgrid modelling and online management , 2008 .

[19]  Clifford H. Thurber,et al.  Parameter estimation and inverse problems , 2005 .