Dynamic identification of beam axial loads using one flexural mode shape

Abstract In the last decades, various methods have been proposed for the experimental evaluation of tensile forces acting in tie-beams of arches and vaults. Moreover, static and dynamic approaches have been formulated to evaluate critical compressive axial forces and flexural stiffness of end constraints. Adopting Euler–Bernoulli beam model, this paper shows that, if bending stiffness and mass per unit length of a beam with constant cross-section are known, the axial force and the flexural stiffness of the end constraints can be deduced by one vibration frequency and three components of the corresponding mode shape. Finally, data conditions are given to assess a physically admissible identification of the unknown parameters.

[1]  Valder Steffen,et al.  Identification of external forces in mechanical systems by using LifeCycle model and stress-stiffening effect , 2007 .

[2]  A. Bokaian,et al.  Natural frequencies of beams under tensile axial loads , 1990 .

[3]  D. J. Ewins,et al.  Modal Testing: Theory and Practice , 1984 .

[4]  G. De Roeck,et al.  Accurate cable force determination using ambient vibration measurements , 2006 .

[5]  Bertram Klein Determination of Effective End Fixity of Columns with Unequal Rotational End Restraints by Means of Vibration Test Data , 1957 .

[6]  Raymond H. Plaut,et al.  Effect Of Axial Load On Forced Vibrations Of Beams , 1993 .

[7]  Menahem Baruch,et al.  A nondestructive dynamic method for the determination of the critical load of elastic columns , 1980 .

[8]  C. G. Go,et al.  EXPERIMENTAL DETERMINATION OF THE BUCKLING LOAD OF A STRAIGHT STRUCTURAL MEMBER BY USING DYNAMIC PARAMETERS , 1997 .

[9]  Stefano Sorace,et al.  Parameter models for estimating in-situ tensile force in tie-rods , 1996 .

[10]  Z. Bažant,et al.  Stability of Structures: Elastic, Inelastic, Fracture, and Damage Theories , 1993 .

[11]  Ugo Tonietti,et al.  Experimental Methods for Estimating In Situ Tensile Force in Tie-Rods , 2001 .

[12]  L. Rayleigh,et al.  The theory of sound , 1894 .

[13]  A. Bokaian,et al.  Natural frequencies of beams under compressive axial loads , 1988 .

[14]  C. Harris,et al.  Harris' Shock and Vibration Handbook , 1976 .

[15]  Sergio Lagomarsino,et al.  The dynamical identification of the tensile force in ancient tie-rods , 2005 .

[16]  Harold Lurie,et al.  Lateral vibrations as related to structural stability , 1950 .

[17]  Sanghyun Choi,et al.  Identification of the tensile force in high-tension bars using modal sensitivities , 2006 .

[18]  G. M. L. Gladwell,et al.  Inverse Problems in Vibration , 1986 .

[19]  K. Graff Wave Motion in Elastic Solids , 1975 .

[20]  N. A. J. Lieven,et al.  Identification and updating of loading in frameworks using dynamic measurements , 2003 .

[21]  C. Blasi,et al.  Determining the Axial Force in Metallic Rods , 1994 .

[22]  M. L. Wenner,et al.  Predicting buckling loads from vibration data , 1968 .

[23]  Raymond H. Plaut,et al.  Use of Frequency Data to Predict Buckling , 1990 .

[24]  Wai-Fah Chen,et al.  Handbook of Structural Engineering , 1997 .

[25]  Lawrence N. Virgin,et al.  Vibration of Axially-Loaded Structures , 2007 .

[26]  P. Greening,et al.  Particularities of Newton's method in space frame force determination, utilising eigenpair functions , 2006 .

[27]  F. J. Shaker,et al.  Effect of axial load on mode shapes and frequencies of beams , 1975 .

[28]  D. R. Huston,et al.  Estimation of axial load in prismatic members using flexural vibrations , 1995 .

[29]  Arnold L. Sweet,et al.  Vibratory Identification of Beam Boundary Conditions , 1976 .