RNA Pol II preferentially regulates ribosomal protein expression by trapping disassociated subunits.

[1]  Jie Huang,et al.  Cross-regulome profiling of RNA polymerases highlights the regulatory role of polymerase III on mRNA transcription by maintaining local chromatin architecture , 2022, Genome Biology.

[2]  Wulan Deng,et al.  The transcriptional coactivator RUVBL2 regulates Pol II clustering with diverse transcription factors , 2022, Nature Communications.

[3]  X. Ji,et al.  Targeted protein degradation reveals RNA Pol II heterogeneity and functional diversity. , 2022, Molecular cell.

[4]  C. Tomomori-Sato,et al.  The 3′ Pol II pausing at replication-dependent histone genes is regulated by Mediator through Cajal bodies’ association with histone locus bodies , 2022, Nature Communications.

[5]  A. Shilatifard,et al.  It's a DoG-eat-DoG world-altered transcriptional mechanisms drive downstream-of-gene (DoG) transcript production. , 2022, Molecular cell.

[6]  Dorian Farache,et al.  Moonlighting translation factors: multifunctionality drives diverse gene regulation. , 2022, Trends in cell biology.

[7]  M. Simon,et al.  Moonlighting functions of metabolic enzymes and metabolites in cancer. , 2021, Molecular cell.

[8]  J. Steitz,et al.  Who let the DoGs out? - biogenesis of stress-induced readthrough transcripts. , 2021, Trends in biochemical sciences.

[9]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[10]  Yanhui Xu,et al.  Structural insights into preinitiation complex assembly on core promoters , 2021, Science.

[11]  J. Steitz,et al.  Hyperosmotic stress alters the RNA polymerase II interactome and induces readthrough transcription despite widespread transcriptional repression. , 2020, Molecular cell.

[12]  Wei Xie,et al.  The landscape of RNA Pol II binding reveals a stepwise transition during ZGA , 2020, Nature.

[13]  M. Fraga,et al.  Global hyperactivation of enhancers stabilizes human and mouse naive pluripotency through inhibition of CDK8/19 Mediator kinases , 2020, Nature Cell Biology.

[14]  Nadia D. Singh,et al.  Moonlighting Proteins. , 2020, Annual review of genetics.

[15]  L. Maquat,et al.  The nuclear cap-binding complex as choreographer of gene transcription and pre-mRNA processing , 2020, Genes & development.

[16]  Sebastian D. Mackowiak,et al.  Selective Mediator-dependence of cell type-specifying transcription , 2020, Nature Genetics.

[17]  Sebastian D. Mackowiak,et al.  Unblending of Transcriptional Condensates in Human Repeat Expansion Disease , 2020, Cell.

[18]  Huanhuan Gao,et al.  Proteomic and Metabolomic Characterization of COVID-19 Patient Sera , 2020, Cell.

[19]  D. Tollervey,et al.  Regulation of the RNAPII Pool Is Integral to the DNA Damage Response , 2020, Cell.

[20]  Yutaka Suzuki,et al.  The role of Mediator and Little Elongation Complex in transcription termination , 2020, Nature Communications.

[21]  Jie Huang,et al.  Genome-wide analyses of chromatin interactions after the loss of Pol I, Pol II, and Pol III , 2020, Genome Biology.

[22]  J. Svejstrup,et al.  Using TTchem-seq for profiling nascent transcription and measuring transcript elongation , 2020, Nature Protocols.

[23]  M. Ohno,et al.  ARS2 Regulates Nuclear Paraspeckle Formation through 3′-End Processing and Stability of NEAT1 Long Noncoding RNA , 2019, Molecular and Cellular Biology.

[24]  Qianwen Sun,et al.  m6A promotes R-loop formation to facilitate transcription termination , 2019, Cell Research.

[25]  S. Baserga,et al.  Ribosomopathies: Old Concepts, New Controversies. , 2019, Trends in genetics : TIG.

[26]  P. Defossez,et al.  Lysine Methylation Regulators Moonlighting outside the Epigenome. , 2019, Molecular cell.

[27]  Jean-Jacques Vasseur,et al.  Identification of the m6Am Methyltransferase PCIF1 Reveals the Location and Functions of m6Am in the Transcriptome. , 2019, Molecular cell.

[28]  Sergey O. Sulima,et al.  Hallmarks of ribosomopathies , 2019, Nucleic acids research.

[29]  N. Hannett,et al.  Pol II phosphorylation regulates a switch between transcriptional and splicing condensates , 2019, Nature.

[30]  B. Tian,et al.  Regulation of Intronic Polyadenylation by PCF11 Impacts mRNA Expression of Long Genes , 2019, Cell reports.

[31]  H. Nishimasu,et al.  Cap-specific terminal N6-methylation of RNA by an RNA polymerase II–associated methyltransferase , 2019, Science.

[32]  Xiaoyan Zhang,et al.  Cistrome Data Browser: expanded datasets and new tools for gene regulatory analysis , 2018, Nucleic Acids Res..

[33]  N. Brockdorff,et al.  Selective Roles of Vertebrate PCF11 in Premature and Full-Length Transcript Termination , 2018, bioRxiv.

[34]  Yang Shi,et al.  PCIF1 catalyzes m6Am mRNA methylation to regulate gene expression , 2018, bioRxiv.

[35]  F. Westermann,et al.  Transcriptome 3′end organization by PCF11 links alternative polyadenylation to formation and neuronal differentiation of neuroblastoma , 2018, Nature Communications.

[36]  Kai Li,et al.  Cap-specific, terminal N6-methylation by a mammalian m6Am methyltransferase , 2018, Cell Research.

[37]  Ashley R. Woodfin,et al.  Targeting Processive Transcription Elongation via SEC Disruption for MYC-Induced Cancer Therapy , 2018, Cell.

[38]  P. Cramer,et al.  RNA polymerase II clustering through carboxy-terminal domain phase separation , 2018, Nature Structural & Molecular Biology.

[39]  R. Shalgi,et al.  DoGFinder: a software for the discovery and quantification of readthrough transcripts from RNA-seq , 2018, BMC genomics.

[40]  Daniel S. Day,et al.  Coactivator condensation at super-enhancers links phase separation and gene control , 2018, Science.

[41]  X. Darzacq,et al.  Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II , 2018, Nature.

[42]  P. Cramer,et al.  Distinct Mechanisms of Transcription Initiation by RNA Polymerases I and II. , 2018, Annual review of biophysics.

[43]  W. Huber,et al.  Proteome-wide identification of ubiquitin interactions using UbIA-MS , 2018, Nature Protocols.

[44]  R. Green,et al.  Ribosomopathies: There’s strength in numbers , 2017, Science.

[45]  N. Proudfoot,et al.  WNK1 kinase and the termination factor PCF11 connect nuclear mRNA export with transcription , 2017, Genes & development.

[46]  Nicola J. Rinaldi,et al.  Genetic effects on gene expression across human tissues , 2017, Nature.

[47]  Phillip G. Montgomery,et al.  Defining a Cancer Dependency Map , 2017, Cell.

[48]  Cheng Li,et al.  GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses , 2017, Nucleic Acids Res..

[49]  Wenqi Xu,et al.  Histone lysine demethylases in mammalian embryonic development , 2017, Experimental &Molecular Medicine.

[50]  R. Young,et al.  A Phase Separation Model for Transcriptional Control , 2017, Cell.

[51]  Y. Zhang,et al.  Allelic reprogramming of the histone modification H3K4me3 in early mammalian development , 2016, Nature.

[52]  Wei Xie,et al.  The landscape of accessible chromatin in mammalian preimplantation embryos , 2016, Nature.

[53]  J. Gagneur,et al.  TT-seq maps the human transient transcriptome , 2016, Science.

[54]  Yi Xing,et al.  Rbfox Proteins Regulate Splicing as Part of a Large Multiprotein Complex LASR , 2016, Cell.

[55]  K. Yamamoto,et al.  Opposing Chromatin Signals Direct and Regulate the Activity of Lysine Demethylase 4C (KDM4C)* , 2016, The Journal of Biological Chemistry.

[56]  Jinghui Zhang,et al.  Reply to Artifacts in the data of Hu et al. , 2015, Nature Genetics.

[57]  M. Carmo-Fonseca,et al.  Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma , 2015, eLife.

[58]  Roy Parker,et al.  Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins. , 2015, Molecular cell.

[59]  N. Proudfoot,et al.  Pcf11 orchestrates transcription termination pathways in yeast , 2015, Genes & development.

[60]  R. Young,et al.  Chromatin proteomic profiling reveals novel proteins associated with histone-marked genomic regions , 2015, Proceedings of the National Academy of Sciences.

[61]  Edwin Cuppen,et al.  Sambamba: fast processing of NGS alignment formats , 2015, Bioinform..

[62]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[63]  Jicheng Li,et al.  Rpb3 promotes hepatocellular carcinoma through its N-terminus , 2014, Oncotarget.

[64]  Fidel Ramírez,et al.  deepTools: a flexible platform for exploring deep-sequencing data , 2014, Nucleic Acids Res..

[65]  R. Sandberg,et al.  Single-Cell RNA-Seq Reveals Dynamic, Random Monoallelic Gene Expression in Mammalian Cells , 2014, Science.

[66]  Daniel R. Zerbino,et al.  WiggleTools: parallel processing of large collections of genome-wide datasets for visualization and statistical analysis , 2013, Bioinform..

[67]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[68]  T. Jensen,et al.  CBC–ARS2 stimulates 3′-end maturation of multiple RNA families and favors cap-proximal processing , 2013, Nature Structural &Molecular Biology.

[69]  S. McKnight,et al.  Phosphorylation-Regulated Binding of RNA Polymerase II to Fibrous Polymers of Low-Complexity Domains , 2013, Cell.

[70]  Mihaela E. Sardiu,et al.  Quantitative Proteomics Demonstrates That the RNA Polymerase II Subunits Rpb4 and Rpb7 Dissociate during Transcriptional Elongation* , 2013, Molecular & Cellular Proteomics.

[71]  S. Rodríguez-Navarro,et al.  The Prefoldin Bud27 Mediates the Assembly of the Eukaryotic RNA Polymerases in an Rpb5-Dependent Manner , 2013, PLoS genetics.

[72]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[73]  J. Manley,et al.  The RNA polymerase II CTD coordinates transcription and RNA processing. , 2012, Genes & development.

[74]  Wei Li,et al.  RSeQC: quality control of RNA-seq experiments , 2012, Bioinform..

[75]  D. Black,et al.  Transcript Dynamics of Proinflammatory Genes Revealed by Sequence Analysis of Subcellular RNA Fractions , 2012, Cell.

[76]  Guangchuang Yu,et al.  clusterProfiler: an R package for comparing biological themes among gene clusters. , 2012, Omics : a journal of integrative biology.

[77]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[78]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[79]  P. Cramer,et al.  Biogenesis of multisubunit RNA polymerases. , 2012, Trends in biochemical sciences.

[80]  Patrick Cramer,et al.  Review Conservation between the Rna Polymerase I, Ii, and Iii Transcription Initiation Machineries , 2022 .

[81]  S. Yokoyama,et al.  Structural basis of transcription by bacterial and eukaryotic RNA polymerases. , 2012, Current opinion in structural biology.

[82]  C. Cole,et al.  COSMIC: the catalogue of somatic mutations in cancer , 2011, Genome Biology.

[83]  C. Pikaard,et al.  Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing , 2011, Nature Reviews Molecular Cell Biology.

[84]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[85]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[86]  M. Choder,et al.  RNA Polymerase II Subunits Link Transcription and mRNA Decay to Translation , 2010, Cell.

[87]  A. Lamond,et al.  HSP90 and its R2TP/Prefoldin-like cochaperone are involved in the cytoplasmic assembly of RNA polymerase II. , 2010, Molecular cell.

[88]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[89]  Mingming Jia,et al.  COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer , 2009, Nucleic Acids Res..

[90]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[91]  Leighton J. Core,et al.  Nascent RNA Sequencing Reveals Widespread Pausing and Divergent Initiation at Human Promoters , 2008, Science.

[92]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[93]  M. Choder,et al.  Transcription in the nucleus and mRNA decay in the cytoplasm are coupled processes. , 2008, Genes & development.

[94]  P. Cramer,et al.  Structural biology of RNA polymerase III: mass spectrometry elucidates subcomplex architecture. , 2007, Structure.

[95]  A. Hinnebusch,et al.  Yeast Cap Binding Complex Impedes Recruitment of Cleavage Factor IA to Weak Termination Sites , 2007, Molecular and Cellular Biology.

[96]  J. Russell,et al.  The RNA polymerase I transcription machinery. , 2006, Biochemical Society symposium.

[97]  G. V. Shpakovski,et al.  Distinct regions of RPB11 are required for heterodimerization with RPB3 in human and yeast RNA polymerase II , 2005, Nucleic acids research.

[98]  M. Vigneron,et al.  Control of Nutrient-Sensitive Transcription Programs by the Unconventional Prefoldin URI , 2003, Science.

[99]  N. Corbi,et al.  Functional interaction of the subunit 3 of RNA polymerase II (RPB3) with transcription factor‐4 (ATF4) , 2003, FEBS letters.

[100]  R. Kobayashi,et al.  Characterization of Human RNA Polymerase III Identifies Orthologues for Saccharomyces cerevisiae RNA Polymerase III Subunits , 2002, Molecular and Cellular Biology.

[101]  N. Corbi,et al.  The α‐like RNA polymerase II core subunit 3 (RPB3) is involved in tissue‐specific transcription and muscle differentiation via interaction with the myogenic factor myogenin , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[102]  P. Cramer,et al.  Architecture of RNA polymerase II and implications for the transcription mechanism. , 2000, Science.

[103]  T. Steitz,et al.  Insights into transcription: structure and function of single-subunit DNA-dependent RNA polymerases. , 2000, Current opinion in structural biology.

[104]  A. Ishihama,et al.  RNA Polymerase II Subunits 2, 3, and 11 Form a Core Subassembly with DNA Binding Activity* , 1997, The Journal of Biological Chemistry.

[105]  M. Wickens,et al.  The C-terminal domain of RNA polymerase II couples mRNA processing to transcription , 1997, Nature.

[106]  Richard A. Young,et al.  An RNA polymerase II holoenzyme responsive to activators , 1994, Nature.

[107]  R. Young,et al.  Two dissociable subunits of yeast RNA polymerase II stimulate the initiation of transcription at a promoter in vitro. , 1991, The Journal of biological chemistry.

[108]  R. Young,et al.  RNA polymerase II. , 1991, Annual review of biochemistry.

[109]  W. Rutter,et al.  Multiple Forms of DNA-dependent RNA Polymerase in Eukaryotic Organisms , 1969, Nature.

[110]  J. Hurwitz,et al.  The role of deoxyribonucleic acid in ribonucleic acid synthesis. XVI. The purification and properties of ribonucleic acid polymerase from yeast: preferential utilization of denatured deoxyribonucleic acid as template. , 1969, The Journal of biological chemistry.