Deep Learning Assisted Optimization of Metasurface for Multi-Band Compatible Infrared Stealth and Radiative Thermal Management

Infrared (IR) stealth plays a vital role in the modern military field. With the continuous development of detection technology, multi-band (such as near-IR laser and middle-IR) compatible IR stealth is required. Combining rigorous coupled wave analysis (RCWA) with Deep Learning (DL), we design a Ge/Ag/Ge multilayer circular-hole metasurface capable of multi-band IR stealth. It achieves low average emissivity of 0.12 and 0.17 in the two atmospheric windows (3~5 μm and 8~14 μm), while it achieves a relatively high average emissivity of 0.61 between the two atmospheric windows (5~8 μm) for the purpose of radiative thermal management. Additionally, the metasurface has a narrow-band high absorptivity of 0.88 at the near-infrared wavelength (1.54 μm) for laser guidance. For the optimized structure, we also analyze the potential physical mechanisms. The structure we optimized is geometrically simple, which may find practical applications aided with advanced nano-fabrication techniques. Also, our work is instructive for the implementation of DL in the design and optimization of multifunctional IR stealth materials.

[1]  Dongqing Liu,et al.  Tunable mid-infrared selective emitter based on inverse design metasurface for infrared stealth with thermal management. , 2022, Optics Express.

[2]  Xian Wang,et al.  Temperature characteristics of Ge/ZnS one-dimension photonic crystal for infrared camouflage , 2021, Optical materials (Amsterdam).

[3]  Stan Z. Li,et al.  Intelligent designs in nanophotonics: from optimization towards inverse creation , 2021, PhotoniX.

[4]  Yong Zhu,et al.  Combined multi-band infrared camouflage and thermal management via a simple multilayer structure design. , 2021, Optics letters.

[5]  E. Ozbay,et al.  Adaptive visible and short-wave infrared camouflage using a dynamically tunable metasurface. , 2021, Optics letters.

[6]  Gil Ju Lee,et al.  Ultra-thin and near-unity selective emitter for efficient cooling. , 2021, Optics express.

[7]  Yuge Han,et al.  Efficient thermal management of the target surface through introducing selective metasurface , 2021 .

[8]  Jordan M. Malof,et al.  Deep Learning the Electromagnetic Properties of Metamaterials—A Comprehensive Review , 2021, Advanced Functional Materials.

[9]  H. Duan,et al.  Accurate inverse design of Fabry–Perot-cavity-based color filters far beyond sRGB via a bidirectional artificial neural network , 2021, Photonics Research.

[10]  Jie Hu,et al.  A Review on Metasurface: From Principle to Smart Metadevices , 2021, Frontiers in Physics.

[11]  Peter R. Wiecha,et al.  Deep learning in nano-photonics: inverse design and beyond , 2020, Photonics Research.

[12]  O. Sigmund,et al.  Inverse design in photonics by topology optimization: tutorial , 2020, Journal of the Optical Society of America B.

[13]  S. Maier,et al.  Genetic-Algorithm-Aided Meta-Atom Multiplication for Improved Absorption and Coloration in Nanophotonics , 2020, ACS Photonics.

[14]  M. Qiu,et al.  High-temperature infrared camouflage with efficient thermal management , 2020, Light, science & applications.

[15]  M. Qiu,et al.  Multi-band middle-infrared-compatible camouflage with thermal management via simple photonic structures , 2020 .

[16]  Trevon Badloe,et al.  Deep learning enabled inverse design in nanophotonics , 2020, Nanophotonics.

[17]  M. Trubetskov,et al.  Characterization of e-beam evaporated Ge, YbF3, ZnS, and LaF3 thin films for laser-oriented coatings. , 2020, Applied optics.

[18]  B. Yoon,et al.  Multiple Resonance Metamaterial Emitter for Deception of Infrared Emission with Enhanced Energy Dissipation. , 2020, ACS applied materials & interfaces.

[19]  Shripad P. Mahulikar,et al.  Review of Infrared signature suppression systems using optical blocking method , 2019, Defence Technology.

[20]  Jiping Huang,et al.  Passive Metashells with Adaptive Thermal Conductivities: Chameleonlike Behavior and Its Origin , 2019, Physical Review Applied.

[21]  Namkyu Lee,et al.  Metamaterial-Selective Emitter for Maximizing Infrared Camouflage Performance with Energy Dissipation. , 2019, ACS applied materials & interfaces.

[22]  Jonathan A. Fan,et al.  Global optimization of dielectric metasurfaces using a physics-driven neural network , 2019, Nano letters.

[23]  Namkyu Lee,et al.  Hierarchical Metamaterials for Multispectral Camouflage of Infrared and Microwaves , 2019, Advanced Functional Materials.

[24]  Jason Hickey,et al.  Data-driven metasurface discovery , 2018, ArXiv.

[25]  Yichen Shen,et al.  Passive directional sub-ambient daytime radiative cooling , 2018, Nature Communications.

[26]  Haifeng Cheng,et al.  A Multilayer Film Based Selective Thermal Emitter for Infrared Stealth Technology , 2018, Advanced Optical Materials.

[27]  Itzik Malkiel,et al.  Plasmonic nanostructure design and characterization via Deep Learning , 2018, Light, science & applications.

[28]  Qiang Li,et al.  Thermal camouflage based on the phase-changing material GST , 2018, Light: Science & Applications.

[29]  Kyu-Tae Lee,et al.  A Generative Model for Inverse Design of Metamaterials , 2018, Nano letters.

[30]  Omer Salihoglu,et al.  Graphene-Based Adaptive Thermal Camouflage. , 2018, Nano letters.

[31]  Xiangang Luo,et al.  Plasmonic Metasurfaces for Simultaneous Thermal Infrared Invisibility and Holographic Illusion , 2018 .

[32]  Zhihong He,et al.  All-metal frequency-selective absorber/emitter for laser stealth and infrared stealth. , 2018, Applied optics.

[33]  M. Qiu,et al.  Tunable dual-band thermal emitter consisting of single-sized phase-changing GST nanodisks. , 2018, Optics express.

[34]  T. Szoplik,et al.  Controlling the optical parameters of self-assembled silver films with wetting layers and annealing , 2017 .

[35]  Zongfu Yu,et al.  Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures , 2017, 2019 Conference on Lasers and Electro-Optics (CLEO).

[36]  Jae W. Hahn,et al.  Selective dual-band metamaterial perfect absorber for infrared stealth technology , 2017, Scientific Reports.

[37]  Xiaoliang Ma,et al.  Multicolor 3D meta-holography by broadband plasmonic modulation , 2016, Science Advances.

[38]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[39]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[40]  Marc Abou Anoma,et al.  Passive radiative cooling below ambient air temperature under direct sunlight , 2014, Nature.

[41]  Weigang Zhang,et al.  Infrared spectrally selective low emissivity from Ge/ZnS one-dimensional heterostructure photonic crystal , 2014 .

[42]  Marios S. Pattichis,et al.  Robust dual-band MWIR/LWIR infrared target tracking , 2014, 2014 48th Asilomar Conference on Signals, Systems and Computers.

[43]  Yan Nie,et al.  Design and realization of one-dimensional double hetero-structure photonic crystals for infrared-radar stealth-compatible materials applications , 2014 .

[44]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[45]  Shanhui Fan,et al.  S4 : A free electromagnetic solver for layered periodic structures , 2012, Comput. Phys. Commun..

[46]  Luis Martín-Moreno,et al.  Light passing through subwavelength apertures , 2010 .

[47]  Luca Dal Negro,et al.  Particle-swarm optimization of broadband nanoplasmonic arrays. , 2010, Optics letters.

[48]  Hemant R. Sonawane,et al.  Infrared signature studies of aerospace vehicles , 2007 .

[49]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[50]  Eli Yablonovitch,et al.  Chalcogenide inverted opal photonic crystal as infrared pigments , 2006 .

[51]  Daniel Maystre,et al.  Ultrarefraction and negative refraction in metamaterials , 2004, SPIE OPTO.

[52]  S. Fan,et al.  Omnidirectional resonance in a metal-dielectric-metal geometry , 2004 .

[53]  Jiafu Wang,et al.  Metamaterial absorber for frequency selective thermal radiation , 2018 .

[54]  Xiaobing Luo,et al.  Illusion Thermotics , 2018, Advanced materials.

[55]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[56]  R. Kshetrimayum,et al.  A brief intro to metamaterials , 2005, IEEE Potentials.