Counting copies of a fixed subgraph in F-free graphs

Abstract Fix graphs F and H and let ex ( n , H , F ) denote the maximum possible number of copies of the graph H in an n -vertex F -free graph. The systematic study of this function was initiated by Alon and Shikhelman [J. Comb. Theory, B. 121 (2016)]. In this paper, we give new general bounds concerning this generalized Turan function. We also determine ex ( n , P k , K 2 , t ) (where P k is a path on k vertices) and ex ( n , C k , K 2 , t ) asymptotically for every k and t . For example, it is shown that for t ≥ 2 and k ≥ 5 we have ex ( n , C k , K 2 , t ) = 1 2 k + o ( 1 ) ( t − 1 ) k ∕ 2 n k ∕ 2 . We also characterize the graphs F that cause the function ex ( n , C k , F ) to be linear in n . In the final section we discuss a connection between the function ex ( n , H , F ) and Berge hypergraph problems.

[1]  Balázs Keszegh,et al.  On the Number of Cycles in a Graph with Restricted Cycle Lengths , 2016, SIAM J. Discret. Math..

[2]  Asaf Shapira,et al.  A Generalized Turan Problem and its Applications , 2018, Electron. Colloquium Comput. Complex..

[3]  Shoham Letzter Many H-Copies in Graphs with a Forbidden Tree , 2019, SIAM J. Discret. Math..

[4]  Béla Bollobás,et al.  Pentagons vs. triangles , 2008, Discret. Math..

[5]  Ki Hang Kim,et al.  On a problem of Turán , 1983 .

[6]  B. Bollobás The evolution of random graphs , 1984 .

[7]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[8]  Andrzej Grzesik,et al.  On the maximum number of odd cycles in graphs without smaller odd cycles , 2022, J. Graph Theory.

[9]  Gyula Y. Katona,et al.  Hypergraph Extensions of the Erdos-Gallai Theorem , 2010, Electron. Notes Discret. Math..

[10]  Dániel Gerbner,et al.  Extremal Results for Berge Hypergraphs , 2015, SIAM J. Discret. Math..

[11]  Máté Vizer,et al.  Asymptotics for the Tur\'an number of Berge-$K_{2,t}$ , 2017 .

[12]  D'aniel Gerbner,et al.  Asymptotics for the Turán number of Berge-K2, t , 2017, J. Comb. Theory, Ser. B.

[13]  Miklós Simonovits,et al.  On the maximal number of certain subgraphs inKr-free graphs , 1991, Graphs Comb..

[14]  Noga Alon,et al.  Many T copies in H-free graphs , 2014, Electron. Notes Discret. Math..

[15]  Robin Wilson,et al.  Modern Graph Theory , 2013 .

[16]  Dániel Gerbner,et al.  Extremal Finite Set Theory , 2018 .

[17]  G. Katona A theorem of finite sets , 2009 .

[18]  J. Sheehan,et al.  On the number of complete subgraphs contained in certain graphs , 1981, J. Comb. Theory, Ser. B.

[19]  Ervin Györi,et al.  Hypergraphs with No Cycle of a Given Length , 2012, Combinatorics, Probability and Computing.

[20]  Ervin Györi,et al.  An Erdős-Gallai type theorem for uniform hypergraphs , 2016, Eur. J. Comb..

[21]  Ervin Györi On the number of C5's in a triangle-free graph , 1989, Comb..

[22]  Zoltán Füredi,et al.  New Asymptotics for Bipartite Turán Numbers , 1996, J. Comb. Theory, Ser. A.

[23]  Michael Tait,et al.  Turán numbers for Berge-hypergraphs and related extremal problems , 2017, Discret. Math..

[24]  Abhishek Methuku,et al.  An Erd\H{o}s-Gallai type theorem for hypergraphs , 2016 .

[25]  Ervin Györi,et al.  Generalized Turán problems for even cycles , 2017, J. Comb. Theory, Ser. B.

[26]  M. Simonovits,et al.  The History of Degenerate (Bipartite) Extremal Graph Problems , 2013, 1306.5167.

[27]  Jonathan Cutler,et al.  Supersaturation for Subgraph Counts , 2019, Graphs Comb..

[28]  L. Lovász Combinatorial problems and exercises , 1979 .

[29]  P. Erdos,et al.  Problems and Results in Graph Theory and Combinatorial Analysis , 1977 .

[30]  Andrzej Grzesik On the maximum number of five-cycles in a triangle-free graph , 2012, J. Comb. Theory, Ser. B.

[31]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[32]  Asaf Shapira,et al.  A Generalized Tur\'an Problem and its Applications , 2017, 1712.00831.

[33]  Paul Erdös,et al.  Some problems in graph theory , 1974 .

[34]  D'aniel Gerbner,et al.  Generalized Turán problems for disjoint copies of graphs , 2017, Discret. Math..

[35]  Jan Hladký,et al.  On the number of pentagons in triangle-free graphs , 2013, J. Comb. Theory, Ser. A.

[36]  Alexandr V. Kostochka,et al.  Turán Problems and Shadows III: Expansions of Graphs , 2014, SIAM J. Discret. Math..

[37]  Ervin Györi,et al.  A note on the maximum number of triangles in a C5-free graph , 2019, J. Graph Theory.

[38]  Jie Ma,et al.  Some sharp results on the generalized Turán numbers , 2018, Eur. J. Comb..

[39]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[40]  Gyula Y. Katona,et al.  Hypergraph extensions of the Erdős-Gallai Theorem , 2010, Eur. J. Comb..

[41]  Hao Li,et al.  The Maximum Number of Triangles in C2k+1-Free Graphs , 2012, Combinatorics, Probability and Computing.

[42]  Felix Lazebnik,et al.  On Hypergraphs of Girth Five , 2003, Electron. J. Comb..

[43]  B. Bollobás On complete subgraphs of different orders , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.

[44]  V. Sós,et al.  On a problem of K. Zarankiewicz , 1954 .