High-resolution myogenic lineage mapping by single-cell mass cytometry

[1]  J. Spinazzola,et al.  CD82 Is a Marker for Prospective Isolation of Human Muscle Satellite Cells and Is Linked to Muscular Dystrophies. , 2016, Cell stem cell.

[2]  P. Muñoz-Cánoves,et al.  Regulation of Muscle Stem Cell Functions: A Focus on the p38 MAPK Signaling Pathway , 2016, Front. Cell Dev. Biol..

[3]  K. Tsuchida,et al.  Cell-Surface Protein Profiling Identifies Distinctive Markers of Progenitor Cells in Human Skeletal Muscle , 2016, Stem cell reports.

[4]  G. Nolan,et al.  Mass Cytometry: Single Cells, Many Features , 2016, Cell.

[5]  G. Nolan,et al.  Automated Mapping of Phenotype Space with Single-Cell Data , 2016, Nature Methods.

[6]  K. Horiuchi,et al.  A Disintegrin and Metalloprotease 10 (ADAM10) Is Indispensable for Maintenance of the Muscle Satellite Cell Pool* , 2015, The Journal of Biological Chemistry.

[7]  Thomas A Rando,et al.  Isolation of skeletal muscle stem cells by fluorescence-activated cell sorting , 2015, Nature Protocols.

[8]  H. Blau,et al.  The central role of muscle stem cells in regenerative failure with aging , 2015, Nature Medicine.

[9]  Sean C. Bendall,et al.  Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis , 2015, Cell.

[10]  P. Blackshear,et al.  Post-transcriptional regulation of satellite cell quiescence by TTP-mediated mRNA decay , 2015, eLife.

[11]  Eli R. Zunder,et al.  A continuous molecular roadmap to iPSC reprogramming through progression analysis of single-cell mass cytometry. , 2015, Cell stem cell.

[12]  M. Sakamoto,et al.  Upregulation of integrin β4 promotes epithelial–mesenchymal transition and is a novel prognostic marker in pancreatic ductal adenocarcinoma , 2015, Laboratory Investigation.

[13]  Eli R. Zunder,et al.  Palladium-based mass tag cell barcoding with a doublet-filtering scheme and single-cell deconvolution algorithm , 2015, Nature Protocols.

[14]  水野 早希子 A disintegrin and metalloprotease 10 is indispensable for maintenance of the muscle satellite cell pool(要旨) , 2015 .

[15]  Eli R. Zunder,et al.  Transient partial permeabilization with saponin enables cellular barcoding prior to surface marker staining , 2014, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[16]  M. Jacomy,et al.  ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software , 2014, PloS one.

[17]  E. Fuchs,et al.  Transit-Amplifying Cells Orchestrate Stem Cell Activity and Tissue Regeneration , 2014, Cell.

[18]  Sean C. Bendall,et al.  Single-Cell Trajectory Detection Uncovers Progression and Regulatory Coordination in Human B Cell Development , 2014, Cell.

[19]  S. Delp,et al.  Rejuvenation of the aged muscle stem cell population restores strength to injured aged muscles , 2014, Nature Medicine.

[20]  R. Matthews,et al.  Barriers and Opportunities , 2014 .

[21]  M. Rudnicki,et al.  Satellite cells: the architects of skeletal muscle. , 2014, Current topics in developmental biology.

[22]  M. Rudnicki,et al.  Pax7 is critical for the normal function of satellite cells in adult skeletal muscle , 2013, Proceedings of the National Academy of Sciences.

[23]  H. Stunnenberg,et al.  The tetraspanin CD9 affords high-purity capture of all murine hematopoietic stem cells. , 2013, Cell reports.

[24]  Sean C. Bendall,et al.  Normalization of mass cytometry data with bead standards , 2013, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[25]  Freddy Radtke,et al.  Stem cells living with a Notch , 2013, Development.

[26]  Y. Fedorov,et al.  Coordination of satellite cell activation and self-renewal by Par-complex-dependent asymmetric activation of p38α/β MAPK. , 2012, Cell stem cell.

[27]  Peter S. Zammit,et al.  Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage , 2012, Development.

[28]  Matthew R Clutter,et al.  Single‐cell mass cytometry adapted to measurements of the cell cycle , 2012, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[29]  Erin F. Simonds,et al.  A platinum‐based covalent viability reagent for single‐cell mass cytometry , 2012, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[30]  M. Blasco,et al.  A Subpopulation of Adult Skeletal Muscle Stem Cells Retains All Template DNA Strands after Cell Division , 2012, Cell.

[31]  L. Kunkel,et al.  β4 Integrin Marks Interstitial Myogenic Progenitor Cells in Adult Murine Skeletal Muscle , 2012, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[32]  Sean C. Bendall,et al.  Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum , 2011, Science.

[33]  M. Yáñez-Mó,et al.  The sheddase activity of ADAM17/TACE is regulated by the tetraspanin CD9 , 2011, Cellular and Molecular Life Sciences.

[34]  Chi-kong Li,et al.  The tetraspanin CD9 regulates migration, adhesion, and homing of human cord blood CD34+ hematopoietic stem and progenitor cells. , 2011, Blood.

[35]  E. Fuchs,et al.  Dynamics between Stem Cells, Niche, and Progeny in the Hair Follicle , 2011, Cell.

[36]  S. Spunt,et al.  Myogenesis and rhabdomyosarcoma the Jekyll and Hyde of skeletal muscle. , 2011, Current topics in developmental biology.

[37]  S. Thrun,et al.  Substrate Elasticity Regulates Skeletal Muscle Stem Cell Self-Renewal in Culture , 2010, Science.

[38]  E. Volpi,et al.  An increase in essential amino acid availability upregulates amino acid transporter expression in human skeletal muscle. , 2010, American journal of physiology. Endocrinology and metabolism.

[39]  B. Druker,et al.  Translation of the Philadelphia chromosome into therapy for CML. , 2008, Blood.

[40]  M. Kyba,et al.  Prospective Isolation of Skeletal Muscle Stem Cells with a Pax7 Reporter , 2008, Stem cells.

[41]  H. Blau,et al.  Self-renewal and expansion of single transplanted muscle stem cells , 2008, Nature.

[42]  Lei Li,et al.  Tetraspanins Regulate ADAM10-Mediated Cleavage of TNF-α and Epidermal Growth Factor1 , 2008, The Journal of Immunology.

[43]  A. Wagers,et al.  Highly Efficient, Functional Engraftment of Skeletal Muscle Stem Cells in Dystrophic Muscles , 2008, Cell.

[44]  X. Lv,et al.  Integrin β4 in Neural Cells , 2008, NeuroMolecular Medicine.

[45]  O. Ornatsky,et al.  Study of cell antigens and intracellular DNA by identification of element-containing labels and metallointercalators using inductively coupled plasma mass spectrometry. , 2008, Analytical chemistry.

[46]  T. Rando,et al.  High Incidence of Non-Random Template Strand Segregation and Asymmetric Fate Determination In Dividing Stem Cells and their Progeny , 2007, PLoS biology.

[47]  E. Mylona,et al.  CD44 regulates myoblast migration and differentiation , 2006, Journal of cellular physiology.

[48]  G. Inghirami,et al.  β4 Integrin Amplifies ErbB2 Signaling to Promote Mammary Tumorigenesis , 2006, Cell.

[49]  N. Jones,et al.  The p38α/β MAPK functions as a molecular switch to activate the quiescent satellite cell , 2005, The Journal of cell biology.

[50]  M. Rudnicki,et al.  Pax7 Is Required for the Specification of Myogenic Satellite Cells , 2000, Cell.

[51]  I. Weissman,et al.  Translating stem and progenitor cell biology to the clinic: barriers and opportunities. , 2000, Science.

[52]  M. Hemler,et al.  Role of Transmembrane 4 Superfamily (Tm4sf) Proteins Cd9 and Cd81 in Muscle Cell Fusion and Myotube Maintenance , 1999, The Journal of cell biology.

[53]  A. Sonnenberg,et al.  Epithelial detachment due to absence of hemidesmosomes in integrin β4 null mice , 1996, Nature Genetics.

[54]  H. Blau,et al.  Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy , 1994, The Journal of cell biology.

[55]  A. Mercurio,et al.  A novel structural variant of the human beta 4 integrin cDNA. , 1994, Cell adhesion and communication.