Rates of stellar tidal disruption as probes of the supermassive black hole mass function

Rates of stellar tidal disruption events (TDEs) by supermassive black holes (SMBHs) due to two-body relaxation are calculated using a large galaxy sample (N=146) in order to explore the sensitivity of the TDE rates to observational uncertainties, such as the parametrization of galaxy light profiles and the stellar mass function. The largest uncertainty arises due to the poorly constrained occupation fraction of SMBHs in low-mass galaxies, which otherwise dominate the total TDE rate. The detection rate of TDE flares by optical surveys is calculated as a function of SMBH mass and other observables for several physically-motivated models of TDE emission. We also quantify the fraction of galaxies that produce deeply penetrating disruption events. If the majority of the detected events are characterized by super-Eddington luminosities (such as disk winds, or synchrotron radiation from an off-axis relativistic jet), then the measured SMBH mass distribution will tightly constrain the low-end SMBH occupation fraction. If Eddington-limited emission channels dominate, however, then the occupation fraction sensitivity is much less pronounced in a flux-limited survey (although still present in a volume-complete event sample). The SMBH mass distribution of the current sample of TDEs, though highly inhomogeneous and encumbered by selection effects, already suggests that Eddington-limited emission channels dominate. Even our most conservative rate estimates appear to be in tension with much lower observationally inferred TDE rates, and we discuss several possible resolutions to this discrepancy.

[1]  T. Piran,et al.  DISK FORMATION VERSUS DISK ACCRETION—WHAT POWERS TIDAL DISRUPTION EVENTS? , 2015 .

[2]  James Guillochon,et al.  A DARK YEAR FOR TIDAL DISRUPTION EVENTS , 2015, 1501.05306.

[3]  T. Piran,et al.  GENERAL RELATIVISTIC HYDRODYNAMIC SIMULATION OF ACCRETION FLOW FROM A STELLAR TIDAL DISRUPTION , 2015, 1501.04365.

[4]  G. Farrar,et al.  MEASUREMENT OF THE RATE OF STELLAR TIDAL DISRUPTION FLARES , 2014, 1407.6425.

[5]  R. Spurzem,et al.  SUPER MASSIVE BLACK HOLE IN GALACTIC NUCLEI WITH TIDAL DISRUPTION OF STARS , 2014, 1407.3537.

[6]  Adam A. Miller,et al.  A CONTINUUM OF H- TO He-RICH TIDAL DISRUPTION CANDIDATES WITH A PREFERENCE FOR E+A GALAXIES , 2014, 1405.1415.

[7]  M. Begelman,et al.  HYPERACCRETION DURING TIDAL DISRUPTION EVENTS: WEAKLY BOUND DEBRIS ENVELOPES AND JETS , 2013, 1312.5314.

[8]  Nathaniel R. Butler,et al.  A TIDAL DISRUPTION EVENT IN A NEARBY GALAXY HOSTING AN INTERMEDIATE MASS BLACK HOLE , 2013, 1311.6162.

[9]  J. Guillochon,et al.  PS1-10jh: THE DISRUPTION OF A MAIN-SEQUENCE STAR OF NEAR-SOLAR COMPOSITION , 2013, 1304.6397.

[10]  R. Sunyaev,et al.  SRG/eROSITA prospects for the detection of stellar tidal disruption flares , 2013, 1304.3376.

[11]  Columbia,et al.  Swift J1644+57 gone MAD: the case for dynamically-important magnetic flux threading the black hole in a jetted tidal disruption event , 2013, 1301.1982.

[12]  S. Gezari,et al.  THE ULTRAVIOLET-BRIGHT, SLOWLY DECLINING TRANSIENT PS1-11af AS A PARTIAL TIDAL DISRUPTION EVENT , 2013, 1309.3009.

[13]  L. Ho,et al.  A tidal flare candidate in Abell 1795 , 2013, 1307.6556.

[14]  S. Gezari Tidal Disruption Events , 2013, Brazilian Journal of Physics.

[15]  C. Matzner,et al.  EVOLUTION OF ACCRETION DISKS IN TIDAL DISRUPTION EVENTS , 2013, 1305.5570.

[16]  N. Kawai,et al.  Recurrent Outbursts and Jet Ejections Expected in Swift J1644+57: Limit-Cycle Activities in a Supermassive Black Hole , 2013, 1305.4943.

[17]  D. Merritt,et al.  THE LOSS-CONE PROBLEM IN AXISYMMETRIC NUCLEI , 2013, 1301.3150.

[18]  E. Berger,et al.  RADIO MONITORING OF THE TIDAL DISRUPTION EVENT SWIFT J164449.3+573451. II. THE RELATIVISTIC JET SHUTS OFF AND A TRANSITION TO FORWARD SHOCK X-RAY/RADIO EMISSION , 2012, 1212.1173.

[19]  Chung-Pei Ma,et al.  REVISITING THE SCALING RELATIONS OF BLACK HOLE MASSES AND HOST GALAXY PROPERTIES , 2012, 1211.2816.

[20]  A. Loeb,et al.  Consequences of Strong Compression in Tidal Disruption Events , 2012, 1210.3374.

[21]  A. Loeb,et al.  Finite, Intense Accretion Bursts from Tidal Disruption of Stars on Bound Orbits , 2012, 1210.1333.

[22]  D. Frail,et al.  Constraints on off-axis jets from stellar tidal disruption flares , 2012, 1210.0022.

[23]  Joshua S. Bloom,et al.  LATE-TIME RADIO EMISSION FROM X-RAY-SELECTED TIDAL DISRUPTION EVENTS , 2012, 1210.0020.

[24]  Enrico Ramirez-Ruiz,et al.  HYDRODYNAMICAL SIMULATIONS TO DETERMINE THE FEEDING RATE OF BLACK HOLES BY THE TIDAL DISRUPTION OF STARS: THE IMPORTANCE OF THE IMPACT PARAMETER AND STELLAR STRUCTURE , 2012, 1206.2350.

[25]  Roland Haas,et al.  GRB060218 AS A TIDAL DISRUPTION OF A WHITE DWARF BY AN INTERMEDIATE-MASS BLACK HOLE , 2012, 1212.4837.

[26]  N. Scott,et al.  THE MBH–LSPHEROID RELATION AT HIGH AND LOW MASSES, THE QUADRATIC GROWTH OF BLACK HOLES, AND INTERMEDIATE-MASS BLACK HOLE CANDIDATES , 2012, 1211.3199.

[27]  T. Alexander Stellar dynamics and tidal disruption events in galactic nuclei , 2012, 1210.0582.

[28]  M. Kesden Black-Hole Spin Dependence in the Light Curves of Tidal Disruption Events , 2012, 1207.6401.

[29]  J. Guillochon,et al.  THE TIDAL DISRUPTION OF GIANT STARS AND THEIR CONTRIBUTION TO THE FLARING SUPERMASSIVE BLACK HOLE POPULATION , 2012, 1206.2922.

[30]  J. Guillochon,et al.  THE DYNAMICS, APPEARANCE, AND DEMOGRAPHICS OF RELATIVISTIC JETS TRIGGERED BY TIDAL DISRUPTION OF STARS IN QUIESCENT SUPERMASSIVE BLACK HOLES , 2012, 1205.1507.

[31]  T. Grav,et al.  An ultraviolet–optical flare from the tidal disruption of a helium-rich stellar core , 2012, Nature.

[32]  R. D. Saxton,et al.  A tidal disruption-like X-ray flare from the quiescent galaxy SDSS J120136.02+300305.5 , 2012, 1202.5900.

[33]  Bing Zhang,et al.  FRAME DRAGGING, DISK WARPING, JET PRECESSING, AND DIPPED X-RAY LIGHT CURVE OF Sw J1644+57 , 2012, 1202.4231.

[34]  Brian D. Metzger,et al.  Global models of runaway accretion in white dwarf debris discs , 2012, 1202.0557.

[35]  E. Berger,et al.  RADIO MONITORING OF THE TIDAL DISRUPTION EVENT SWIFT J164449.3+573451. I. JET ENERGETICS AND THE PRISTINE PARSEC-SCALE ENVIRONMENT OF A SUPERMASSIVE BLACK HOLE , 2011, 1112.1697.

[36]  M. Kesden Tidal disruption rate of stars by spinning supermassive black holes , 2011, 1109.6329.

[37]  Tsvi Piran,et al.  Detectable radio flares following gravitational waves from mergers of binary neutron stars , 2011, Nature.

[38]  B. Metzger,et al.  Afterglow model for the radio emission from the jetted tidal disruption candidate Swift J1644+57 , 2011, 1110.1111.

[39]  P. Kroupa,et al.  Tidal disruption rate of stars by supermassive black holes obtained by direct N-body simulations , 2011, 1108.2270.

[40]  P. Giommi,et al.  Relativistic jet activity from the tidal disruption of a star by a massive black hole , 2011, Nature.

[41]  Eran O. Ofek,et al.  SWIFT J2058.4+0516: DISCOVERY OF A POSSIBLE SECOND RELATIVISTIC TIDAL DISRUPTION FLARE? , 2011, 1107.5307.

[42]  Ryan Chornock,et al.  Birth of a relativistic outflow in the unusual γ-ray transient Swift J164449.3+573451 , 2011, Nature.

[43]  A. Loeb,et al.  Tidal Disruption Flares of Stars From Moderately Recoiled Black Holes , 2011, 1105.4966.

[44]  K. Ulaczyk,et al.  Unbound or distant planetary mass population detected by gravitational microlensing , 2011, Nature.

[45]  L. A. Antonelli,et al.  A pr 2 01 1 Discovery of the Onset of Rapid Accretion by a Dormant Massive Black Hole , 2013 .

[46]  E. O. Ofek,et al.  An Extremely Luminous Panchromatic Outburst from the Nucleus of a Distant Galaxy , 2011, Science.

[47]  Nathaniel R. Butler,et al.  A Possible Relativistic Jetted Outburst from a Massive Black Hole Fed by a Tidally Disrupted Star , 2011, Science.

[48]  Nathaniel R. Butler,et al.  PTF10iya: A short-lived, luminous flare from the nuclear region of a star-forming galaxy , 2011, 1103.0779.

[49]  L. Hernquist,et al.  K+A GALAXIES AS THE AFTERMATH OF GAS-RICH MERGERS: SIMULATING THE EVOLUTION OF GALAXIES AS SEEN BY SPECTROSCOPIC SURVEYS , 2011, 1102.3689.

[50]  Fukun Liu,et al.  TIDAL STELLAR DISRUPTIONS BY MASSIVE BLACK HOLE PAIRS. II. DECAYING BINARIES , 2010, 1012.4466.

[51]  C. Wegg,et al.  MULTIPLE TIDAL DISRUPTIONS AS AN INDICATOR OF BINARY SUPERMASSIVE BLACK HOLE SYSTEMS , 2010, 1011.5874.

[52]  Y. Levin,et al.  SECULAR STELLAR DYNAMICS NEAR A MASSIVE BLACK HOLE , 2010, 1010.1535.

[53]  Andrew J. Drake,et al.  OPTICAL DISCOVERY OF PROBABLE STELLAR TIDAL DISRUPTION FLARES , 2010, 1009.1627.

[54]  Israel,et al.  Multiband light curves of tidal disruption events , 2010, 1008.4589.

[55]  M. Eracleous,et al.  A TIDAL DISRUPTION FLARE IN A1689 FROM AN ARCHIVAL X-RAY SURVEY OF GALAXY CLUSTERS , 2010, 1008.4140.

[56]  A. Loeb,et al.  Prompt Tidal Disruption of Stars as an Electromagnetic Signature of Supermassive Black Hole Coalescence , 2010, 1004.4833.

[57]  D. Kasen,et al.  OPTICAL TRANSIENTS FROM THE UNBOUND DEBRIS OF TIDAL DISRUPTION , 2009, 0911.5358.

[58]  Chris L. Fryer,et al.  ON THE MAXIMUM MASS OF STELLAR BLACK HOLES , 2009, 0904.2784.

[59]  T. Paumard,et al.  AN EXTREMELY TOP-HEAVY INITIAL MASS FUNCTION IN THE GALACTIC CENTER STELLAR DISKS , 2009, 0908.2177.

[60]  Oxford,et al.  Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.

[61]  E. Quataert,et al.  Optical Flares from the Tidal Disruption of Stars by Massive Black Holes , 2009, Proceedings of the International Astronomical Union.

[62]  Fukun Liu,et al.  ENHANCED TIDAL DISRUPTION RATES FROM MASSIVE BLACK HOLE BINARIES , 2009, 0904.4481.

[63]  S. Gezari,et al.  LUMINOUS THERMAL FLARES FROM QUIESCENT SUPERMASSIVE BLACK HOLES , 2009, 0904.1596.

[64]  E. Ramirez-Ruiz,et al.  TIDAL DISRUPTION AND IGNITION OF WHITE DWARFS BY MODERATELY MASSIVE BLACK HOLES , 2008, 0808.2143.

[65]  University of Cambridge,et al.  Stellar disruption by a supermassive black hole: is the light curve really proportional to t -5/3 ? , 2008, 0810.1288.

[66]  R. D. Saxton,et al.  Evolution of tidal disruption candidates discovered by XMM-Newton , 2008, 0807.4452.

[67]  Case Western Reserve University,et al.  Accepted in ApJ. Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE DETAILED EVOLUTION OF E+A GALAXIES INTO EARLY TYPES 1 , 2022 .

[68]  B. Milliard,et al.  Accepted for Publication in ApJ Preprint typeset using L ATEX style emulateapj v. 02/07/07 UV/OPTICAL DETECTIONS OF CANDIDATE TIDAL DISRUPTION EVENTS BY GALEX AND CFHTLS 1 , 2022 .

[69]  Tomotsugu Goto,et al.  A catalogue of local E+A (post-starburst) galaxies selected from the Sloan Digital Sky Survey Data Release 5 , 2007, 0801.1106.

[70]  L. Ho,et al.  The Mass Function of Active Black Holes in the Local Universe , 2007, 0705.0020.

[71]  S. Tremaine,et al.  The Centers of Early-Type Galaxies with Hubble Space Telescope. VI. Bimodal Central Surface Brightness Profiles , 2006, astro-ph/0609762.

[72]  Tod R. Lauer,et al.  The Masses of Nuclear Black Holes in Luminous Elliptical Galaxies and Implications for the Space Density of the Most Massive Black Holes , 2006, astro-ph/0606739.

[73]  T. Alexander,et al.  Massive Perturber-driven Interactions between Stars and a Massive Black Hole , 2006, astro-ph/0606443.

[74]  G. Hasinger,et al.  Candidate tidal disruption events from the XMM-Newton slew survey , 2006, astro-ph/0612340.

[75]  S. Gezari,et al.  Ultraviolet Detection of the Tidal Disruption of a Star by a Supermassive Black Hole , 2006, astro-ph/0612069.

[76]  T. Alexander,et al.  Resonant Relaxation near a Massive Black Hole: The Stellar Distribution and Gravitational Wave Sources , 2006, astro-ph/0601161.

[77]  M. Mori,et al.  Supercritical Accretion Flows around Black Holes: Two-dimensional, Radiation Pressure-dominated Disks with Photon Trapping , 2005, astro-ph/0504168.

[78]  D. Merritt,et al.  Loss Cone Refilling Rates in Galactic Nuclei , 2004, astro-ph/0411210.

[79]  P. Saha,et al.  The tidal disruption rate in dense galactic cusps containing a supermassive binary black hole , 2004, astro-ph/0410610.

[80]  T. Ebisuzaki,et al.  Massive Black Holes in Star Clusters. II. Realistic Cluster Models , 2004, astro-ph/0406231.

[81]  D. Merritt,et al.  Chaotic Loss Cones and Black Hole Fueling , 2004 .

[82]  A. Ramos,et al.  Evidence for a New Elliptical-Galaxy Paradigm: Sérsic and Core Galaxies , 2004, astro-ph/0403659.

[83]  D. Merritt,et al.  Revised Rates of Stellar Disruption in Galactic Nuclei , 2003, astro-ph/0305493.

[84]  I. Trujillo,et al.  A New Empirical Model for the Structural Analysis of Early-Type Galaxies, and A Critical Review of the Nuker Model , 2003, astro-ph/0306023.

[85]  D. Merritt,et al.  Chaotic Loss Cones, Black Hole Fueling and the M-Sigma Relation , 2003, astro-ph/0302296.

[86]  L. Mayer,et al.  On the life and death of satellite haloes , 2003, astro-ph/0301271.

[87]  J. L. Donley,et al.  Accepted for publication in The Astronomical Journal Large-Amplitude X-ray Outbursts from Galactic Nuclei: A Systematic Survey Using ROSAT Archival Data , 2002 .

[88]  Michael J. Kurtz,et al.  V- and R-band Galaxy Luminosity Functions and Low Surface Brightness Galaxies in the Century Survey , 2001, astro-ph/0105186.

[89]  D. Merritt,et al.  The M•-σ Relation for Supermassive Black Holes , 2000, astro-ph/0008310.

[90]  F. Rasio,et al.  Thermal and Dynamical Equilibrium in Two-Component Star Clusters , 1999, astro-ph/9912457.

[91]  S. Tremaine,et al.  Rates of tidal disruption of stars by massive central black holes , 1999, astro-ph/9902032.

[92]  D. Syer,et al.  Tidal disruption rates of stars in observed galaxies , 1998, astro-ph/9812389.

[93]  Roger D. Blandford,et al.  On the fate of gas accreting at a low rate on to a black hole , 1998, astro-ph/9809083.

[94]  S. Tremaine,et al.  The Demography of Massive Dark Objects in Galaxy Centers , 1997, astro-ph/9708072.

[95]  A. Loeb,et al.  Optical Appearance of the Debris of a Star Disrupted by a Massive Black Hole , 1997, astro-ph/9703079.

[96]  Kevin P. Rauch,et al.  Resonant tidal disruption in galactic nuclei , 1996 .

[97]  S. Tremaine,et al.  Resonant relaxation in stellar systems , 1996, astro-ph/9603018.

[98]  T. Piran,et al.  Hydrodynamic Timescales and Temporal Structure of Gamma-Ray Bursts , 1995, astro-ph/9508081.

[99]  Carl J. Grillmair,et al.  The Centers of Early-Type Galaxies with HST.I.An Observational Survey , 1995 .

[100]  J. Cannizzo,et al.  The Disk Accretion of a Tidally Disrupted Star onto a Massive Black Hole , 1990 .

[101]  Charles R. Evans,et al.  The tidal disruption of a star by a massive black hole , 1989 .

[102]  J. Lasota,et al.  Slim Accretion Disks , 1988 .

[103]  Martin J. Rees,et al.  Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies , 1988, Nature.

[104]  James E. Gunn,et al.  Spectroscopy of galaxies in distant clusters. II: The population of the 3C 295 cluster , 1983 .

[105]  R. Kulsrud,et al.  Stellar distribution around a black hole: Numerical integration of the Fokker-Planck equation , 1978 .

[106]  S. Shapiro,et al.  The distribution and consumption rate of stars around a massive, collapsed object , 1977 .

[107]  Martin J. Rees,et al.  Effects of Massive Central Black Holes on Dense Stellar Systems , 1976 .

[108]  P. Schechter An analytic expression for the luminosity function for galaxies , 1976 .

[109]  J. Hills Possible power source of Seyfert galaxies and QSOs , 1975, Nature.

[110]  Douglas M. Eardley,et al.  Black Holes in Binary Systems: Instability of Disk Accretion , 1974 .

[111]  Stuart L. Shapiro,et al.  Random Gravitational Encounters and the Evolution of Spherical Systems. III. Halo , 1971 .

[112]  Jose Luis. Sersic,et al.  Atlas de Galaxias Australes , 1968 .