Electron density learning of non-covalent systems

Chemists continuously harvest the power of non-covalent interactions to control phenomena in both the micro- and macroscopic worlds. From the quantum chemical perspective, the strategies essentially rely upon an in-depth understanding of the physical origin of these interactions, the quantification of their magnitude and their visualization in real-space. The total electron density ρ(r) represents the simplest yet most comprehensive piece of information available for fully characterizing bonding patterns and non-covalent interactions. The charge density of a molecule can be computed by solving the Schrödinger equation, but this approach becomes rapidly demanding if the electron density has to be evaluated for thousands of different molecules or very large chemical systems, such as peptides and proteins. Here we present a transferable and scalable machine-learning model capable of predicting the total electron density directly from the atomic coordinates. The regression model is used to access qualitative and quantitative insights beyond the underlying ρ(r) in a diverse ensemble of sidechain–sidechain dimers extracted from the BioFragment database (BFDb). The transferability of the model to more complex chemical systems is demonstrated by predicting and analyzing the electron density of a collection of 8 polypeptides.

[1]  Weitao Yang,et al.  Challenges for density functional theory. , 2012, Chemical reviews.

[2]  Marc Messerschmidt,et al.  A Theoretical Databank of Transferable Aspherical Atoms and Its Application to Electrostatic Interaction Energy Calculations of Macromolecules. , 2007, Journal of chemical theory and computation.

[3]  C. Jelsch,et al.  Structural analysis and multipole modelling of quercetin monohydrate--a quantitative and comparative study. , 2011, Acta crystallographica. Section B, Structural science.

[4]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[5]  Claudia Ambrosch-Draxl,et al.  Second-Harmonic Optical Response from First Principles , 2003, cond-mat/0305016.

[6]  B. Brutschy,et al.  van der Waals Molecules III: Introduction. , 2000, Chemical reviews.

[7]  P Coppens,et al.  Chemical applications of X-ray charge-density analysis. , 2001, Chemical reviews.

[8]  A. Bagaturyants,et al.  First principles crystal engineering of nonlinear optical materials. I. Prototypical case of urea. , 2017, The Journal of chemical physics.

[9]  Paul G. Mezey,et al.  Ab initio quality properties for macromolecules using the ADMA approach , 2003, J. Comput. Chem..

[10]  Pavel Hobza,et al.  S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures , 2011, Journal of chemical theory and computation.

[11]  Anthony J. Stone,et al.  The Theory of Intermolecular Forces , 2013 .

[12]  P. Mezey,et al.  Fuzzy fragment selection strategies, basis set dependence and HF–DFT comparisons in the applications of the ADMA method of macromolecular quantum chemistry , 2005 .

[13]  Richard F. W. Bader A quantum theory of molecular structure and its applications , 1991 .

[14]  Julia Contreras-García,et al.  Revealing noncovalent interactions. , 2010, Journal of the American Chemical Society.

[15]  R. Stewart Electron population analysis with rigid pseudoatoms , 1976 .

[16]  Li Li,et al.  Bypassing the Kohn-Sham equations with machine learning , 2016, Nature Communications.

[17]  S. Grimme Supramolecular binding thermodynamics by dispersion-corrected density functional theory. , 2012, Chemistry.

[18]  J. Murray,et al.  Statistical analysis of the molecular surface electrostatic potential: an approach to describing noncovalent interactions in condensed phases , 1998 .

[19]  Richard A Friesner,et al.  Parameterization of a B3LYP specific correction for non-covalent interactions and basis set superposition error on a gigantic dataset of CCSD(T) quality non-covalent interaction energies. , 2011, Journal of chemical theory and computation.

[20]  Jirí Cerný,et al.  Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. , 2006, Physical chemistry chemical physics : PCCP.

[21]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[22]  Paul G. Mezey,et al.  Ab Initio Quality Electron Densities for Proteins: A MEDLA Approach , 1994 .

[23]  N. H. March,et al.  Ratio of density gradient to electron density as a local wavenumber to characterize the ground state of spherical atoms , 1997 .

[24]  C. Lecomte,et al.  On the application of an experimental multipolar pseudo-atom library for accurate refinement of small-molecule and protein crystal structures. , 2007, Acta crystallographica. Section A, Foundations of crystallography.

[25]  Clémence Corminboeuf,et al.  Simultaneous Visualization of Covalent and Noncovalent Interactions Using Regions of Density Overlap , 2014, Journal of chemical theory and computation.

[26]  Hermann Stoll,et al.  On the use of local basis sets for localized molecular orbitals , 1980 .

[27]  Lori A Burns,et al.  Basis set convergence of the coupled-cluster correction, δ(MP2)(CCSD(T)): best practices for benchmarking non-covalent interactions and the attendant revision of the S22, NBC10, HBC6, and HSG databases. , 2011, The Journal of chemical physics.

[28]  C. Corminboeuf,et al.  Perspective: Found in translation: Quantum chemical tools for grasping non-covalent interactions. , 2017, The Journal of chemical physics.

[29]  J. Murray,et al.  Statistically-based interaction indices derived from molecular surface electrostatic potentials: a general interaction properties function (GIPF) , 1994 .

[30]  Alexander D. MacKerell,et al.  The BioFragment Database (BFDb): An open-data platform for computational chemistry analysis of noncovalent interactions. , 2017, The Journal of chemical physics.

[31]  Á. Nagy,et al.  Local wave-vector, Shannon and Fisher information , 2008 .

[32]  Alistair P. Rendell,et al.  COUPLED-CLUSTER THEORY EMPLOYING APPROXIMATE INTEGRALS : AN APPROACH TO AVOID THE INPUT/OUTPUT AND STORAGE BOTTLENECKS , 1994 .

[33]  E. Ganz,et al.  Computational study of hydrogen binding by metal-organic framework-5. , 2004, The Journal of chemical physics.

[34]  Andrea Grisafi,et al.  Symmetry-Adapted Machine Learning for Tensorial Properties of Atomistic Systems. , 2017, Physical review letters.

[35]  Jean-Philip Piquemal,et al.  NCIPLOT: a program for plotting non-covalent interaction regions. , 2011, Journal of chemical theory and computation.

[36]  A. Becke Perspective: Fifty years of density-functional theory in chemical physics. , 2014, The Journal of chemical physics.

[37]  J. Sipe,et al.  Second-order optical response in semiconductors , 2000 .

[38]  C. Lecomte,et al.  Ultrahigh-resolution crystallography and related electron density and electrostatic properties in proteins , 2008, Journal of synchrotron radiation.

[39]  Anand Chandrasekaran,et al.  Solving the electronic structure problem with machine learning , 2019, npj Computational Materials.

[40]  M. Pederson,et al.  Infrared intensities and Raman-scattering activities within density-functional theory. , 1996, Physical review. B, Condensed matter.

[41]  B. Dittrich,et al.  A simple approach to nonspherical electron densities by using invarioms. , 2004, Angewandte Chemie.

[42]  Daniel G. A. Smith,et al.  Revised Damping Parameters for the D3 Dispersion Correction to Density Functional Theory. , 2016, The journal of physical chemistry letters.

[43]  J. L. Whitten,et al.  Coulombic potential energy integrals and approximations , 1973 .

[44]  Timothy D. Fenn,et al.  Polarizable atomic multipole X-ray refinement: application to peptide crystals , 2009, Acta crystallographica. Section D, Biological crystallography.

[45]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[46]  Martin W. Feyereisen,et al.  Use of approximate integrals in ab initio theory. An application in MP2 energy calculations , 1993 .

[47]  Paul G. Mezey,et al.  Ab Initio-Quality Electrostatic Potentials for Proteins: An Application of the ADMA Approach , 2002 .

[48]  M. Head‐Gordon,et al.  ωB97M-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. , 2016, The Journal of chemical physics.

[49]  Marco Häser,et al.  Auxiliary basis sets to approximate Coulomb potentials , 1995 .

[50]  W. Kohn,et al.  Nearsightedness of electronic matter. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Donald G Truhlar,et al.  Density functionals with broad applicability in chemistry. , 2008, Accounts of chemical research.

[52]  F. L. Hirshfeld,et al.  Difference densities by least-squares refinement: fumaramic acid , 1971 .

[53]  Philip Coppens,et al.  Aspherical-atom scattering factors from molecular wave functions. 1. Transferability and conformation dependence of atomic electron densities of peptides within the multipole formalism. , 2002, Acta crystallographica. Section A, Foundations of crystallography.

[54]  P. Hobza,et al.  Introduction: Noncovalent Interactions. , 2016, Chemical reviews.

[55]  Florian Weigend,et al.  A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency , 2002 .

[56]  R. Parr,et al.  Discontinuous approximate molecular electronic wave‐functions , 1977 .

[57]  P. Coppens,et al.  Combination of the exact potential and multipole methods (EP/MM) for evaluation of intermolecular electrostatic interaction energies with pseudoatom representation of molecular electron densities , 2004 .

[58]  Birger Dittrich,et al.  X-ray structure refinement using aspherical atomic density functions obtained from quantum-mechanical calculations. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[59]  Piero Macchi,et al.  Modern Charge-Density Analysis , 2012 .

[60]  Kohn,et al.  Density functional and density matrix method scaling linearly with the number of atoms. , 1996, Physical review letters.

[61]  B. Sumpter,et al.  Density-functional approaches to noncovalent interactions: a comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. , 2011, The Journal of chemical physics.

[62]  A. Castleman,et al.  van der Waais Molecules II: Introduction , 1994 .

[63]  Alberto Fabrizio,et al.  Transferable Machine-Learning Model of the Electron Density , 2018, ACS central science.

[64]  M. Head‐Gordon,et al.  Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals , 2017 .

[65]  Alessandro Genoni,et al.  Libraries of Extremely Localized Molecular Orbitals. 2. Comparison with the Pseudoatoms Transferability. , 2016, Journal of chemical theory and computation.

[66]  Claude Lecomte,et al.  On Building a Data Bank of Transferable Experimental Electron Density Parameters Applicable to Polypeptides , 1995 .

[67]  Patrick W. Fowler,et al.  Theoretical studies of van der Waals molecules and intermolecular forces , 1988 .

[68]  Andrea N Bootsma,et al.  Tuning Stacking Interactions between Asp-Arg Salt Bridges and Heterocyclic Drug Fragments. , 2018, Journal of chemical information and modeling.

[69]  A. Genoni,et al.  Libraries of Extremely Localized Molecular Orbitals. 1. Model Molecules Approximation and Molecular Orbitals Transferability. , 2016, Journal of chemical theory and computation.

[70]  Chérif F. Matta,et al.  The Quantum Theory of Atoms in Molecules , 2007 .

[71]  A. Genoni,et al.  Libraries of Extremely Localized Molecular Orbitals. 3. Construction and Preliminary Assessment of the New Databanks. , 2018, The journal of physical chemistry. A.

[72]  B. Honig,et al.  Calculation of electrostatic potentials in an enzyme active site , 1987, Nature.

[73]  Tejender S. Thakur,et al.  Transferability of Multipole Charge Density Parameters for Supramolecular Synthons: A New Tool for Quantitative Crystal Engineering , 2011 .

[74]  C. Lecomte,et al.  Ultra-high-resolution X-ray structure of proteins , 2004, Cellular and Molecular Life Sciences CMLS.

[75]  A Aubry,et al.  Transferability of multipole charge-density parameters: application to very high resolution oligopeptide and protein structures. , 1998, Acta crystallographica. Section D, Biological crystallography.

[76]  Philip Coppens,et al.  Testing aspherical atom refinements on small-molecule data sets , 1978 .

[77]  John M. Alred,et al.  Machine learning electron density in sulfur crosslinked carbon nanotubes , 2018, Composites Science and Technology.

[78]  Frederick R. Manby,et al.  Fast linear scaling second-order Møller-Plesset perturbation theory (MP2) using local and density fitting approximations , 2003 .

[79]  D A Dougherty,et al.  Cation-pi interactions in aromatics of biological and medicinal interest: electrostatic potential surfaces as a useful qualitative guide. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[80]  P. Popelier,et al.  Multipolar electrostatics. , 2014, Physical chemistry chemical physics : PCCP.

[81]  Prasad L. Polavarapu,et al.  Ab initio vibrational Raman and Raman optical activity spectra , 1990 .

[82]  Hugo J. Bohórquez,et al.  On the local representation of the electronic momentum operator in atomic systems. , 2008, The Journal of chemical physics.

[83]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[84]  Hughes,et al.  Calculation of second-order optical response in semiconductors. , 1996, Physical review. B, Condensed matter.

[85]  Stefan Grimme,et al.  Benchmarking of London Dispersion-Accounting Density Functional Theory Methods on Very Large Molecular Complexes. , 2013, Journal of chemical theory and computation.

[86]  Andrew G. Taube,et al.  Improving the accuracy of Møller-Plesset perturbation theory with neural networks. , 2017, The Journal of chemical physics.

[87]  C. Jelsch,et al.  An improved experimental databank of transferable multipolar atom models--ELMAM2. Construction details and applications. , 2012, Acta crystallographica. Section A, Foundations of crystallography.