Guided Stable Dynamic Projections
暂无分享,去创建一个
Alexandru Telea | João Luiz Dihl Comba | Eduardo Faccin Vernier | E. F. Vernier | J. Comba | A. Telea
[1] Tobias Schreck,et al. TimeSeriesPaths : Projection-Based Explorative Analysis of Multivariate Time Series Data , 2012, WSCG 2012.
[2] Xiaohui Yu,et al. A Perception-Driven Approach to Supervised Dimensionality Reduction for Visualization , 2018, IEEE Transactions on Visualization and Computer Graphics.
[3] Ben J. A. Kröse,et al. Learning from delayed rewards , 1995, Robotics Auton. Syst..
[4] Joshua B. Tenenbaum,et al. Sparse multidimensional scaling using land-mark points , 2004 .
[5] Fernando Vieira Paulovich,et al. UPDis: A user-assisted projection technique for distance information , 2018, Inf. Vis..
[6] Paulo E. Rauber,et al. Visualizing Time-Dependent Data Using Dynamic t-SNE , 2016, EuroVis.
[7] Laurens van der Maaten,et al. Accelerating t-SNE using tree-based algorithms , 2014, J. Mach. Learn. Res..
[8] Ming-Hsuan Yang,et al. Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.
[9] Geoffrey E. Hinton,et al. Visualizing Data using t-SNE , 2008 .
[10] Alex Krizhevsky,et al. Learning Multiple Layers of Features from Tiny Images , 2009 .
[11] Miguel Á. Carreira-Perpiñán,et al. Locally Linear Landmarks for Large-Scale Manifold Learning , 2013, ECML/PKDD.
[12] A. K. Cline,et al. Computation of the Singular Value Decomposition , 2006 .
[13] Haim Levkowitz,et al. Least Square Projection: A Fast High-Precision Multidimensional Projection Technique and Its Application to Document Mapping , 2008, IEEE Transactions on Visualization and Computer Graphics.
[14] Heng Tao Shen,et al. Principal Component Analysis , 2009, Encyclopedia of Biometrics.
[15] Stefan Steinerberger,et al. Fast Interpolation-based t-SNE for Improved Visualization of Single-Cell RNA-Seq Data , 2017, Nature Methods.
[16] Alfred Inselberg,et al. Parallel coordinates: a tool for visualizing multi-dimensional geometry , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.
[17] Eric O. Postma,et al. Dimensionality Reduction: A Comparative Review , 2008 .
[18] Alexandru Telea,et al. Deep learning multidimensional projections , 2019, Inf. Vis..
[19] Daniel A. Keim,et al. Visual quality metrics and human perception: an initial study on 2D projections of large multidimensional data , 2010, AVI.
[20] Daniel A. Keim,et al. Temporal MDS Plots for Analysis of Multivariate Data , 2016, IEEE Transactions on Visualization and Computer Graphics.
[21] John P. Lewis,et al. Eurographics/ Ieee-vgtc Symposium on Visualization 2009 Selecting Good Views of High-dimensional Data Using Class Consistency , 2022 .
[22] Jarkko Venna,et al. Visualizing gene interaction graphs with local multidimensional scaling , 2006, ESANN.
[23] Yves Le Traon,et al. Visualizing and Exploring Dynamic High-Dimensional Datasets with LION-tSNE , 2017, ArXiv.
[24] Rosane Minghim,et al. Visual analysis of dimensionality reduction quality for parameterized projections , 2014, Comput. Graph..
[25] Michael Krone,et al. Visual Analysis of Multivariate Intensive Care Surveillance Data , 2020, VCBM.
[26] Nicolas Le Roux,et al. Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering , 2003, NIPS.
[27] Andreas Kerren,et al. Toward a Quantitative Survey of Dimension Reduction Techniques , 2019, IEEE Transactions on Visualization and Computer Graphics.
[28] Richard A. Becker,et al. The Visual Design and Control of Trellis Display , 1996 .
[29] Luis Gustavo Nonato,et al. Local Affine Multidimensional Projection , 2011, IEEE Transactions on Visualization and Computer Graphics.
[30] Valerio Pascucci,et al. Visualizing High-Dimensional Data: Advances in the Past Decade , 2017, IEEE Transactions on Visualization and Computer Graphics.
[31] Ramana Rao,et al. The table lens: merging graphical and symbolic representations in an interactive focus + context visualization for tabular information , 1994, CHI '94.
[32] Karol J. Piczak. ESC: Dataset for Environmental Sound Classification , 2015, ACM Multimedia.
[33] Leland McInnes,et al. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.
[34] Paulo E. Rauber,et al. Visualizing the Hidden Activity of Artificial Neural Networks , 2017, IEEE Transactions on Visualization and Computer Graphics.
[35] Luis Gustavo Nonato,et al. Multidimensional Projection for Visual Analytics: Linking Techniques with Distortions, Tasks, and Layout Enrichment , 2019, IEEE Transactions on Visualization and Computer Graphics.
[36] Christophe Hurter,et al. Projection Navigation In Extremely Large Datasets (PNIELD) , 2017, EuroVis.
[37] Wei Chen,et al. Motion track: Visualizing variations of human motion data , 2010, 2010 IEEE Pacific Visualization Symposium (PacificVis).
[38] Alberto D. Pascual-Montano,et al. A survey of dimensionality reduction techniques , 2014, ArXiv.
[39] Joshua B. Tenenbaum,et al. Global Versus Local Methods in Nonlinear Dimensionality Reduction , 2002, NIPS.
[40] Robert B. Ross,et al. A visual analytics system for optimizing the performance of large-scale networks in supercomputing systems , 2018, Vis. Informatics.
[41] Fernando V. Paulovich,et al. Xtreaming: an incremental multidimensional projection technique and its application to streaming data , 2020, ArXiv.
[42] Steven Franconeri,et al. The Connected Scatterplot for Presenting Paired Time Series , 2016, IEEE Transactions on Visualization and Computer Graphics.
[43] Kwan-Liu Ma,et al. A Visual Analytics Framework for Reviewing Multivariate Time-Series Data with Dimensionality Reduction , 2021, IEEE Transactions on Visualization and Computer Graphics.
[44] Bettina Speckmann,et al. Quantitative Comparison of Time‐Dependent Treemaps , 2019, Comput. Graph. Forum.
[45] Jorge S. Marques,et al. Selecting Landmark Points for Sparse Manifold Learning , 2005, NIPS.
[46] Alexandru Telea,et al. Quantitative Comparison of Dynamic Treemaps for Software Evolution Visualization , 2018, 2018 IEEE Working Conference on Software Visualization (VISSOFT).
[47] Pierre Dragicevic,et al. Time Curves: Folding Time to Visualize Patterns of Temporal Evolution in Data , 2016, IEEE Transactions on Visualization and Computer Graphics.
[48] Elmar Eisemann,et al. Hierarchical Stochastic Neighbor Embedding , 2016, Comput. Graph. Forum.
[49] Rosane Minghim,et al. Explaining Neighborhood Preservation for Multidimensional Projections , 2015, CGVC.
[50] E. F. Vernier,et al. Quantitative Evaluation of Time‐Dependent Multidimensional Projection Techniques , 2020, Comput. Graph. Forum.
[51] Zoubin Ghahramani,et al. Unifying linear dimensionality reduction , 2014, 1406.0873.
[52] Christophe Hurter,et al. Multidimensional Data Exploration by Explicitly Controlled Animation , 2017, Informatics.
[53] I K Fodor,et al. A Survey of Dimension Reduction Techniques , 2002 .
[54] B. Zupan,et al. Embedding to reference t-SNE space addresses batch effects in single-cell classification , 2019, bioRxiv.
[55] Stefan Steinerberger,et al. Clustering with t-SNE, provably , 2017, SIAM J. Math. Data Sci..
[56] Daniel Kressner,et al. Numerical Methods for General and Structured Eigenvalue Problems , 2005, Lecture Notes in Computational Science and Engineering.