EVIDENCE FOR PopIII-LIKE STELLAR POPULATIONS IN THE MOST LUMINOUS Lyα EMITTERS AT THE EPOCH OF REIONIZATION: SPECTROSCOPIC CONFIRMATION

Faint Lyα emitters become increasingly rarer toward the reionization epoch (z ∼ 6–7). However, observations from a very large (∼5 deg2) Lyα narrow-band survey at z = 6.6 show that this is not the case for the most luminous emitters, capable of ionizing their own local bubbles. Here we present follow-up observations of the two most luminous Lyα candidates in the COSMOS field: “MASOSA” and “CR7.” We used X-SHOOTER, SINFONI, and FORS2 on the Very Large Telescope, and DEIMOS on Keck, to confirm both candidates beyond any doubt. We find redshifts of z = 6.541 and z = 6.604 for “MASOSA” and “CR7,” respectively. MASOSA has a strong detection in Lyα with a line width of 386 ± 30 km s−1 (FWHM) and with very high EW0 (>200 Å), but undetected in the continuum, implying very low stellar mass and a likely young, metal-poor stellar population. “CR7,” with an observed Lyα luminosity of 1043.92±0.05 erg s−1 is the most luminous Lyα emitter ever found at z > 6 and is spatially extended (∼16 kpc). “CR7” reveals a narrow Lyα line with 266 ± 15 km s−1 FWHM, being detected in the near-infrared (NIR) (rest-frame UV; β = −2.3 ± 0.1) and in IRAC/Spitzer. We detect a narrow He ii 1640 Å emission line (6σ, FWHM = 130 ± 30 km s−1) in CR7 which can explain the clear excess seen in the J-band photometry (EW0 ∼ 80 Å). We find no other emission lines from the UV to the NIR in our X-SHOOTER spectra (He ii/O iii] 1663 Å > 3 and He ii/C iii] 1908 Å > 2.5). We conclude that CR7 is best explained by a combination of a PopIII-like population, which dominates the rest-frame UV and the nebular emission, and a more normal stellar population, which presumably dominates the mass. Hubble Space Telescope/WFC3 observations show that the light is indeed spatially separated between a very blue component, coincident with Lyα and He ii emission, and two red components (∼5 kpc away), which dominate the mass. Our findings are consistent with theoretical predictions of a PopIII wave, with PopIII star formation migrating away from the original sites of star formation.

[1]  M. Franx,et al.  A SPECTROSCOPIC REDSHIFT MEASUREMENT FOR A LUMINOUS LYMAN BREAK GALAXY AT z = 7.730 USING KECK/MOSFIRE , 2015, 1502.05399.

[2]  M. Lombardi,et al.  MUSE integral-field spectroscopy towards the Frontier Fields cluster Abell S1063 I. Data products and redshift identifications , 2014, 1409.3507.

[3]  S. White,et al.  The EAGLE project: Simulating the evolution and assembly of galaxies and their environments , 2014, 1407.7040.

[4]  E. Vanzella,et al.  Can the intergalactic medium cause a rapid drop in Lyα emission at z > 6? , 2014, 1406.6373.

[5]  P. W. Wang,et al.  The VIMOS Ultra-Deep Survey (VUDS): fast increase in the fraction of strong Lyman-α emitters from z = 2 to z = 6 , 2014, 1403.3693.

[6]  E. Gawiser,et al.  HUBBLE SPACE TELESCOPE EMISSION LINE GALAXIES AT z ∼ 2: THE Lyα ESCAPE FRACTION , 2014 .

[7]  B. Milvang-Jensen,et al.  Ultraviolet emission lines in young low-mass galaxies at z ≃ 2: physical properties and implications for studies at z > 7 , 2014, 1408.1420.

[8]  M. Dijkstra Lyα Emitting Galaxies as a Probe of Reionisation , 2014, Publications of the Astronomical Society of Australia.

[9]  A. Koekemoer,et al.  RAPID DECLINE OF Lyα EMISSION TOWARD THE REIONIZATION ERA , 2014, 1405.4869.

[10]  V. Springel,et al.  Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe , 2014, 1405.2921.

[11]  Masanori Iye,et al.  ACCELERATED EVOLUTION OF THE Lyα LUMINOSITY FUNCTION AT z ≳ 7 REVEALED BY THE SUBARU ULTRA-DEEP SURVEY FOR Lyα EMITTERS AT z = 7.3 , 2014, 1404.6066.

[12]  N. Konidaris,et al.  LINE-EMITTING GALAXIES BEYOND A REDSHIFT OF 7: AN IMPROVED METHOD FOR ESTIMATING THE EVOLVING NEUTRALITY OF THE INTERGALACTIC MEDIUM , 2014, 1404.4632.

[13]  M. Giavalisco,et al.  NEW OBSERVATIONS OF z ∼ 7 GALAXIES: EVIDENCE FOR A PATCHY REIONIZATION , 2014, 1403.5466.

[14]  M. Franx,et al.  UV LUMINOSITY FUNCTIONS AT REDSHIFTS z ∼ 4 TO z ∼ 10: 10,000 GALAXIES FROM HST LEGACY FIELDS , 2014, 1403.4295.

[15]  B. Milvang-Jensen,et al.  A 10 deg2 Lyman α survey at z=8.8 with spectroscopic follow-up: strong constraints on the luminosity function and implications for other surveys , 2014, 1402.6697.

[16]  P. Capak,et al.  SPECTROSCOPIC OBSERVATION OF Lyα EMITTERS AT z ∼ 7.7 AND IMPLICATIONS ON RE-IONIZATION , 2014, 1402.3604.

[17]  O. Fèvre,et al.  The bright end of the galaxy luminosity function at z≃7: before the onset of mass quenching? , 2013, 1312.5643.

[18]  M. Jarvis,et al.  Spectroscopy of z ∼ 7 candidate galaxies: using Lyman α to constrain the neutral fraction of hydrogen in the high-redshift universe , 2013, 1311.0057.

[19]  R. Bouwens,et al.  SLOW EVOLUTION OF THE SPECIFIC STAR FORMATION RATE AT z > 2: THE IMPACT OF DUST, EMISSION LINES, AND A RISING STAR FORMATION HISTORY , 2012, 1208.4362.

[20]  M. Giavalisco,et al.  A galaxy rapidly forming stars 700 million years after the Big Bang at redshift 7.51 , 2013, Nature.

[21]  G. Chiaki,et al.  ONE HUNDRED FIRST STARS: PROTOSTELLAR EVOLUTION AND THE FINAL MASSES , 2013, 1308.4456.

[22]  M. Donahue,et al.  EVIDENCE FOR UBIQUITOUS HIGH-EQUIVALENT-WIDTH NEBULAR EMISSION IN z ∼ 7 GALAXIES: TOWARD A CLEAN MEASUREMENT OF THE SPECIFIC STAR-FORMATION RATE USING A SAMPLE OF BRIGHT, MAGNIFIED GALAXIES , 2013, 1307.5847.

[23]  D. Iono,et al.  AN INTENSELY STAR-FORMING GALAXY AT z ∼ 7 WITH LOW DUST AND METAL CONTENT REVEALED BY DEEP ALMA AND HST OBSERVATIONS , 2013, 1306.3572.

[24]  J. Dunlop,et al.  Unravelling obese black holes in the first galaxies , 2013, 1302.6996.

[25]  E. Gawiser,et al.  Magellan/MMIRS near-infrared multi-object spectroscopy of nebular emission from star-forming galaxies at 2 < z < 3 , 2013, 1301.5600.

[26]  K. Shimasaku,et al.  FIRST SPECTROSCOPIC EVIDENCE FOR HIGH IONIZATION STATE AND LOW OXYGEN ABUNDANCE IN Lyα EMITTERS, , 2012, 1208.3260.

[27]  A. Connolly,et al.  THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS , 2012, 1203.3192.

[28]  B. Garilli,et al.  He II emitters in the VIMOS VLT Deep Survey: Population III star formation or peculiar stellar populations in galaxies at 2 < z < 4.6? , 2012, 1212.5270.

[29]  G. Bruce Berriman,et al.  Astrophysics Source Code Library , 2012, ArXiv.

[30]  Michele Cirasuolo,et al.  THE ABUNDANCE OF STAR-FORMING GALAXIES IN THE REDSHIFT RANGE 8.5–12: NEW RESULTS FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2012, 1211.6804.

[31]  Linhua Jiang,et al.  A Lyα EMITTER WITH AN EXTREMELY LARGE REST-FRAME EQUIVALENT WIDTH OF ∼900 Å AT z = 6.5: A CANDIDATE POPULATION III-DOMINATED GALAXY? , 2012, 1210.4933.

[32]  Y. Mellier,et al.  UltraVISTA: a new ultra-deep near-infrared survey in COSMOS , 2012, 1204.6586.

[33]  M. Milosavljevic,et al.  CONFINED POPULATION III ENRICHMENT AND THE PROSPECTS FOR PROMPT SECOND-GENERATION STAR FORMATION , 2012, 1203.2957.

[34]  J. Brinchmann,et al.  Strongly star forming galaxies in the local Universe with nebular He iiλ4686 emission , 2012, 1201.1290.

[35]  K. Shimasaku,et al.  THE FIRST SYSTEMATIC SURVEY FOR Lyα EMITTERS AT z = 7.3 WITH RED-SENSITIVE SUBARU/SUPRIME-CAM , 2011, 1112.3997.

[36]  R. Manuputy,et al.  X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope , 2011, 1110.1944.

[37]  Hooshang Nayyeri,et al.  SPECTROSCOPIC CONFIRMATION OF THREE z-DROPOUT GALAXIES AT z = 6.844–7.213: DEMOGRAPHICS OF Lyα EMISSION IN z ∼ 7 GALAXIES , 2011, 1107.3159.

[38]  Richard G. McMahon,et al.  A luminous quasar at a redshift of z = 7.085 , 2011, Nature.

[39]  S. Okamura,et al.  AVERAGE METALLICITY AND STAR FORMATION RATE OF Lyα EMITTERS PROBED BY A TRIPLE NARROWBAND SURVEY , 2011, 1105.2824.

[40]  R. Davé,et al.  PROBING POPULATION III STARS IN GALAXY IOK-1 AT z = 6.96 THROUGH He ii EMISSION , 2011, 1105.2319.

[41]  S. Okamura,et al.  COMPLETING THE CENSUS OF Lyα EMITTERS AT THE REIONIZATION EPOCH , 2011, 1104.2330.

[42]  Volker Springel,et al.  SIMULATIONS ON A MOVING MESH: THE CLUSTERED FORMATION OF POPULATION III PROTOSTARS , 2011, 1101.5491.

[43]  A. Mesinger,et al.  The detectability of Lyα emission from galaxies during the epoch of reionization , 2011, 1101.5160.

[44]  M. Pettini,et al.  DIFFUSE Lyα EMITTING HALOS: A GENERIC PROPERTY OF HIGH-REDSHIFT STAR-FORMING GALAXIES , 2011, 1101.2204.

[45]  Robin Ciardullo,et al.  THE HETDEX PILOT SURVEY. III. THE LOW METALLICITIES OF HIGH-REDSHIFT Lyα GALAXIES , 2010, 1011.0431.

[46]  S. Okamura,et al.  COMPLETING THE CENSUS OF Ly alpha EMITTERS AT THE REIONIZATION EPOCH , 2011 .

[47]  P. Capak,et al.  AN ATLAS OF z = 5.7 AND z = 6.5 Lyα EMITTERS, , 2010, 1009.1144.

[48]  D. Schaerer,et al.  Predicted UV properties of very metal-poor starburst galaxies , 2010, 1008.2114.

[49]  T. Greif,et al.  Accretion on to black holes formed by direct collapse , 2010, 1007.3849.

[50]  S. Okamura,et al.  STATISTICS OF 207 Lyα EMITTERS AT A REDSHIFT NEAR 7: CONSTRAINTS ON REIONIZATION AND GALAXY FORMATION MODELS , 2010, 1007.2961.

[51]  C. Steidel,et al.  PHYSICAL CONDITIONS IN A YOUNG, UNREDDENED, LOW-METALLICITY GALAXY AT HIGH REDSHIFT , 2010, 1006.5456.

[52]  M. Zaldarriaga,et al.  Lyα COOLING EMISSION FROM GALAXY FORMATION , 2010, 1005.3041.

[53]  S. Okamura,et al.  STELLAR POPULATIONS OF Lyα EMITTERS AT z ∼ 6–7: CONSTRAINTS ON THE ESCAPE FRACTION OF IONIZING PHOTONS FROM GALAXY BUILDING BLOCKS , 2010, 1004.0963.

[54]  C. Leitherer,et al.  Escape of about five per cent of Lyman-α photons from high-redshift star-forming galaxies , 2010, Nature.

[55]  D. Schaerer,et al.  On the physical properties of z ≈ 6–8 galaxies , 2010, 1002.1090.

[56]  A. Grazian,et al.  The unusual Niv)-emitter galaxy GDS J033218.92-275302.7: star formation or AGN-driven winds from a massive galaxy at z=5.56 , 2009, 0912.3007.

[57]  A. Dey,et al.  THE DISCOVERY OF A LARGE Lyα+He ii NEBULA AT z ≈ 1.67: A CANDIDATE LOW METALLICITY REGION? , 2009, 0906.4785.

[58]  R. Maiolino,et al.  Chemical evolution of high-redshift radio galaxies , 2009, 0905.1581.

[59]  D. Schaerer,et al.  The impact of nebular emission on the ages of z~6 galaxies , 2009, 0905.0866.

[60]  Takamitsu Miyaji,et al.  THE CHANDRA COSMOS SURVEY. I. OVERVIEW AND POINT SOURCE CATALOG , 2009, 0903.2062.

[61]  S. Okamura,et al.  DISCOVERY OF A GIANT Lyα EMITTER NEAR THE REIONIZATION EPOCH , 2008, 0807.4174.

[62]  D. Thompson,et al.  COSMOS PHOTOMETRIC REDSHIFTS WITH 30-BANDS FOR 2-deg2 , 2008, 0809.2101.

[63]  Observatoire de Geneve,et al.  On the Detectability of Lyman-alpha Emission in Star-forming Galaxies: The Role of Dust , 2008, 0805.3501.

[64]  Iap,et al.  Galaxies with Wolf-Rayet signatures in the low-redshift Universe. A survey using the Sloan Digital Sky Survey , 2008, 0805.1073.

[65]  R. Maiolino,et al.  A Photometric Survey for Lyα-He II Dual Emitters: Searching for Population III Stars in High-Redshift Galaxies , 2008, 0802.4123.

[66]  S. Okamura,et al.  The Subaru/XMM-Newton Deep Survey (SXDS). IV. Evolution of Lyα Emitters from z = 3.1 to 5.7 in the 1 deg2 Field: Luminosity Functions and AGN , 2007, 0707.3161.

[67]  R. Schneider,et al.  Population III stars: hidden or disappeared? , 2007, 0707.1433.

[68]  D. Schiminovich,et al.  The First Release COSMOS Optical and Near-IR Data and Catalog , 2007, 0704.2430.

[69]  M. Dijkstra,et al.  Very Massive Stars in High-Redshift Galaxies , 2007, 0704.1671.

[70]  B. Garilli,et al.  Lyα Emitters at Redshift 5.7 in the COSMOS Field , 2007, astro-ph/0702458.

[71]  D. Calzetti,et al.  COSMOS: Hubble Space Telescope Observations , 2006, astro-ph/0612306.

[72]  T. Greif,et al.  The First Stars , 2003, astro-ph/0311019.

[73]  T. Morokuma,et al.  A galaxy at a redshift z = 6.96 , 2006, Nature.

[74]  R. Davé,et al.  Constraints on physical properties of z ∼ 6 galaxies using cosmological hydrodynamic simulations , 2006, astro-ph/0607039.

[75]  Z. Haiman,et al.  Significant primordial star formation at redshifts z ≈ 3–4 , 2006, Nature.

[76]  Robert H. Becker,et al.  Constraining the Evolution of the Ionizing Background and the Epoch of Reionization with z ∼ 6 Quasars. II. A Sample of 19 Quasars , 2005, astro-ph/0512082.

[77]  R. Davé,et al.  Probing Galaxy Formation with He II Cooling Lines , 2005, astro-ph/0509007.

[78]  C. Wolf,et al.  The Wide Field Imager Lyman-Alpha Search (WFILAS) for galaxies at redshift ~5.7: II. Survey design and sample analysis , 2006, astro-ph/0605019.

[79]  Matias Zaldarriaga,et al.  Cosmological Parameter Estimation Using 21 cm Radiation from the Epoch of Reionization , 2005, astro-ph/0512263.

[80]  Dwingeloo,et al.  Simulating Cosmic Reionization at Large Scales I: the Geometry of Reionization , 2005, astro-ph/0512187.

[81]  R. Pelló,et al.  Stellar populations and Lyα emission in two lensed z>~ 6 galaxies , 2005, astro-ph/0506685.

[82]  A. Meiksin Constraints on the ionization sources of the high‐redshift intergalactic medium , 2004, astro-ph/0409256.

[83]  M. Langlois,et al.  Society of Photo-Optical Instrumentation Engineers , 2005 .

[84]  James Rhoads,et al.  Luminosity Functions of Lyα Emitters at Redshifts z = 6.5 and z = 5.7: Evidence against Reionization at z ≤ 6.5 , 2004, astro-ph/0407408.

[85]  S. Okamura,et al.  A Subaru Search for Lyα Blobs in and around the Protocluster Region At Redshift z = 3.1 , 2004, astro-ph/0405221.

[86]  M. Zaldarriaga,et al.  The Growth of H II Regions During Reionization , 2004, astro-ph/0403697.

[87]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[88]  Norbert N. Hubin,et al.  SINFONI - Integral field spectroscopy at 50 milli-arcsecond resolution with the ESO VLT , 2003, SPIE Astronomical Telescopes + Instrumentation.

[89]  V. Springel,et al.  Cosmic reionization by stellar sources: population III stars , 2003, astro-ph/0303098.

[90]  R. Schneider,et al.  The Detectability of the First Stars and Their Cluster Enrichment Signatures , 2003, astro-ph/0301628.

[91]  D. Schaerer The transition from Population III to normal galaxies: Lyα and He II emission and the ionising properties of high redshift starburst galaxies , 2002, astro-ph/0210462.

[92]  A. Moorwood,et al.  Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .

[93]  S. Okamura,et al.  Subaru Prime Focus Camera — Suprime-Cam , 2002, astro-ph/0211006.

[94]  D. Schaerer On the properties of massive Population III stars and metal-free stellar populations , 2001, astro-ph/0110697.

[95]  J. Rhoads,et al.  Large Equivalent Width Lyα line Emission at z=4.5: Young Galaxies in a Young Universe? , 2001, astro-ph/0111126.

[96]  V. Narayanan,et al.  Evidence for Reionization at z ∼ 6: Detection of a Gunn-Peterson Trough in a z = 6.28 Quasar , 2001, astro-ph/0108097.

[97]  J. Shull,et al.  Probing the First Stars with Hydrogen and Helium Recombination Emission , 2000, astro-ph/0011303.

[98]  Z. Haiman,et al.  Quasar Strömgren Spheres Before Cosmological Reionization , 2000, astro-ph/0006376.

[99]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[100]  M. Giavalisco,et al.  Lyα Imaging of a Proto-Cluster Region at ⟨z⟩ = 3.09 , 1999, astro-ph/9910144.

[101]  Bernard Muschielok,et al.  Successful Commissioning of FORS1 - the First Optical Instrument on the VLT , 1998 .

[102]  L. Cowie,et al.  High-z Lyα Emitters. I. A Blank-Field Search for Objects near Redshift z = 3.4 in and around the Hubble Deep Field and the Hawaii Deep Field SSA 22 , 1998, astro-ph/9801003.

[103]  M. Giavalisco,et al.  Spectroscopic Confirmation of a Population of Normal Star-forming Galaxies at Redshifts z > 3 , 1996, astro-ph/9602024.

[104]  Piero Madau,et al.  Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .

[105]  P. Shapiro,et al.  Reionization in a cold dark matter universe: The feedback of galaxy formation on the intergalactic medium , 1994 .

[106]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .

[107]  E. Salpeter The Luminosity function and stellar evolution , 1955 .