Human connectomics — What will the future demand?

Significant resources are now being devoted to large-scale international studies attempting to map the connectome — the brain's wiring diagram. This review will focus on the use of human neuroimaging approaches to map the connectome at a macroscopic level. This emerging field of human connectomics brings both opportunities and challenges. Opportunities arise from the ability to apply a powerful toolkit of mathematical and computational approaches to interrogate these rich datasets, many of which are being freely shared with the scientific community. Challenges arise in methodology, interpretability and biological or clinical validity. This review discusses these challenges and opportunities and highlights potential future directions.

[1]  Andreas Kleinschmidt,et al.  Functional interactions between intrinsic brain activity and behavior , 2013, NeuroImage.

[2]  Edward T. Bullmore,et al.  Whole-brain anatomical networks: Does the choice of nodes matter? , 2010, NeuroImage.

[3]  Gaël Varoquaux,et al.  Learning and comparing functional connectomes across subjects , 2013, NeuroImage.

[4]  Timothy Edward John Behrens,et al.  Training induces changes in white matter architecture , 2009, Nature Neuroscience.

[5]  J. Staiger,et al.  Mapping remodeling of thalamocortical projections in the living reeler mouse brain by diffusion tractography , 2013, Proceedings of the National Academy of Sciences.

[6]  Michael Breakspear,et al.  Graph analysis of the human connectome: Promise, progress, and pitfalls , 2013, NeuroImage.

[7]  Flavio Dell'Acqua,et al.  Connectomic approaches before the connectome , 2013, NeuroImage.

[8]  Alan C. Evans Networks of anatomical covariance , 2013, NeuroImage.

[9]  Nikola T. Markov,et al.  A Weighted and Directed Interareal Connectivity Matrix for Macaque Cerebral Cortex , 2012, Cerebral cortex.

[10]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[11]  Kevan A. C. Martin,et al.  Sparse reconstruction of brain circuits: Or, how to survive without a microscopic connectome , 2013, NeuroImage.

[12]  Heidi Johansen-Berg,et al.  Structural Plasticity: Rewiring the Brain , 2007, Current Biology.

[13]  Gustavo Deco,et al.  Bottom up modeling of the connectome: Linking structure and function in the resting brain and their changes in aging , 2013, NeuroImage.

[14]  Jean-Francois Mangin,et al.  Toward global tractography , 2013, NeuroImage.

[15]  Willie F. Tobin,et al.  Rapid formation and selective stabilization of synapses for enduring motor memories , 2009, Nature.

[16]  Heidi Johansen-Berg,et al.  Human Structural Plasticity at Record Speed , 2012, Neuron.

[17]  T. Bliss,et al.  Plasticity in the human central nervous system. , 2006, Brain : a journal of neurology.

[18]  Stephen M. Smith,et al.  Temporally-independent functional modes of spontaneous brain activity , 2012, Proceedings of the National Academy of Sciences.

[19]  Christian Windischberger,et al.  Toward discovery science of human brain function , 2010, Proceedings of the National Academy of Sciences.

[20]  Heidi Johansen-Berg,et al.  Tractography: Where Do We Go from Here? , 2011, Brain Connect..

[21]  B. Stankoff,et al.  Induction of myelination in the central nervous system by electrical activity. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Mark W. Woolrich,et al.  Resting-state fMRI in the Human Connectome Project , 2013, NeuroImage.

[23]  Mark W. Woolrich,et al.  Adding dynamics to the Human Connectome Project with MEG , 2013, NeuroImage.

[24]  Steen Moeller,et al.  Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project , 2013, NeuroImage.

[25]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[26]  Patric Hagmann,et al.  Comparing connectomes across subjects and populations at different scales , 2013, NeuroImage.

[27]  Mark W. Woolrich,et al.  Biophysical network models and the human connectome , 2013, NeuroImage.

[28]  Steen Moeller,et al.  Advances in diffusion MRI acquisition and processing in the Human Connectome Project , 2013, NeuroImage.

[29]  Klaas E. Stephan,et al.  The history of CoCoMac , 2013, NeuroImage.

[30]  Jean-Philippe Thiran,et al.  Structural connectomics in brain diseases , 2013, NeuroImage.

[31]  Thomas T. Liu,et al.  Neurovascular factors in resting-state functional MRI , 2013, NeuroImage.

[32]  Jeff H. Duyn,et al.  Sleep and the functional connectome , 2013, NeuroImage.

[33]  R. Cameron Craddock,et al.  Clinical applications of the functional connectome , 2013, NeuroImage.

[34]  R. Fields,et al.  New insights into neuron-glia communication. , 2002, Science.

[35]  M. P. van den Heuvel,et al.  The parcellation-based connectome: limitations and extensions. , 2013, NeuroImage.

[36]  Tianzi Jiang,et al.  Brainnetome: A new -ome to understand the brain and its disorders , 2013, NeuroImage.

[37]  Richard E. Passingham,et al.  What we can and cannot tell about the wiring of the human brain , 2013, NeuroImage.

[38]  E. Gould,et al.  Learning enhances adult neurogenesis in the hippocampal formation , 1999, Nature Neuroscience.

[39]  Zoltán Toroczkai,et al.  Why data coherence and quality is critical for understanding interareal cortical networks , 2013, NeuroImage.

[40]  Julien Cohen-Adad,et al.  Pushing the limits of in vivo diffusion MRI for the Human Connectome Project , 2013, NeuroImage.

[41]  Olaf Sporns,et al.  The human connectome: Origins and challenges , 2013, NeuroImage.

[42]  Simon B. Eickhoff,et al.  Microstructural grey matter parcellation and its relevance for connectome analyses , 2013, NeuroImage.

[43]  Timothy E. J. Behrens,et al.  Human and Monkey Ventral Prefrontal Fibers Use the Same Organizational Principles to Reach Their Targets: Tracing versus Tractography , 2013, The Journal of Neuroscience.

[44]  Anatol C. Kreitzer,et al.  Plasticity in gray and white: neuroimaging changes in brain structure during learning , 2012, Nature Neuroscience.

[45]  S. Ichinose,et al.  Extension of Corticocortical Afferents into the Anterior Bank of the Intraparietal Sulcus by Tool-use Training in Adult Monkeys , 2005 .

[46]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[47]  W. Gan,et al.  Stably maintained dendritic spines are associated with lifelong memories , 2009, Nature.

[48]  A. Araque,et al.  Glial cells in neuronal network function , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[49]  Yufeng Zang,et al.  Standardizing the intrinsic brain: Towards robust measurement of inter-individual variation in 1000 functional connectomes , 2013, NeuroImage.

[50]  Olaf Sporns,et al.  What Is the Human Connectome , 2009 .

[51]  Kevin Murphy,et al.  Resting-state fMRI confounds and cleanup , 2013, NeuroImage.

[52]  Yaniv Assaf,et al.  Learning in the Fast Lane: New Insights into Neuroplasticity , 2012, Neuron.

[53]  David A. Leopold,et al.  The contribution of electrophysiology to functional connectivity mapping , 2013, NeuroImage.

[54]  M. Nedergaard,et al.  Artifact versus reality—How astrocytes contribute to synaptic events , 2012, Glia.

[55]  Timothy Edward John Behrens,et al.  The CONNECT project: Combining macro- and micro-structure , 2013, NeuroImage.

[56]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[57]  Aaron S. Andalman,et al.  Structural and molecular interrogation of intact biological systems , 2013, Nature.

[58]  Julien Cohen-Adad,et al.  The Human Connectome Project and beyond: Initial applications of 300mT/m gradients , 2013, NeuroImage.

[59]  R. Fields,et al.  White matter in learning, cognition and psychiatric disorders , 2008, Trends in Neurosciences.

[60]  Philippe Kahane,et al.  Probabilistic functional tractography of the human cortex , 2013, NeuroImage.