The mechanism of eutectic growth in highly anisotropic materials

In the past 50 years, there has been increasing interest—both theoretically and experimentally—in the problem of pattern formation of a moving boundary, such as a solidification front. One example of pattern formation is that of irregular eutectic solidification, in which the solid–liquid interface is non-isothermal and the interphase spacing varies in ways that are poorly understood. Here, we identify the growth mode of irregular eutectics, using reconstructions from four-dimensional (that is, time and space resolved) X-ray microtomography. Our results show that the eutectic growth process can be markedly different from that seen in previously used model systems and theories based on the ex situ analysis of microstructure. In light of our experimental findings, we present a coherent growth model of irregular eutectic solidification.

[1]  H. Aaronson,et al.  Overview no. 57 Morphology, crystallography and kinetics of sympathetic nucleation , 1987 .

[2]  Martin E. Glicksman,et al.  Principles of Solidification: An Introduction to Modern Casting and Crystal Growth Concepts , 2010 .

[3]  J. Allison,et al.  The kinetics of Fe-rich intermetallic formation in aluminium alloys : In situ observation , 2009 .

[4]  C. Romming,et al.  β-Al4.5FeSi : A combined synchrotron powder diffraction, electron diffraction, high-resolution electron microscopy and single-crystal X-ray diffraction study of a faulted structure , 1998 .

[5]  A. Hellawell The growth and structure of eutectics with silicon and germanium , 1970 .

[6]  M. Suéry,et al.  In situ study of nucleation and growth of the irregular alpha-Al/beta-Al5FeSi eutectic by 3-D synchrotron X-ray microtomography , 2010 .

[7]  W. Kurz,et al.  A theory of branching limited growth of irregular eutectics , 1980 .

[8]  K. Kobayashi,et al.  The crystal growth of silicon in Al-Si alloys , 1985 .

[9]  R. S. Fidler,et al.  The characterization of eutectic structures , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[10]  A. Załuska,et al.  Electron microscope study of Al-Fe-Si intermetallics in 6201 aluminum alloy , 1996 .

[11]  A. J. McLeod,et al.  Growth mode of the aluminum phase in Al-Si and Al-Al3Fe eutectics , 1973 .

[12]  P. Voorhees,et al.  Twin-mediated crystal growth: an enigma resolved , 2016, Scientific Reports.

[13]  S. Amelinckx,et al.  The stacking-fault energy in germanium , 1963 .

[14]  M. Shamsuzzoha,et al.  Crystal morphology of unmodified aluminium-silicon eutectic microstructures , 1986 .

[15]  M. De Graef,et al.  The Three-Dimensional Morphology of Growing Dendrites , 2015, Scientific Reports.

[16]  Charles A. Bouman,et al.  TIMBIR: A Method for Time-Space Reconstruction From Interlaced Views , 2015, IEEE Transactions on Computational Imaging.

[17]  R. M. Aikin The mechanical properties of in-situ composites , 1997 .

[18]  R. Seidensticker,et al.  Propagation Mechanism of Germanium Dendrites , 1960 .

[19]  J. Hunt,et al.  Lamellar and Rod Eutectic Growth , 1988 .

[20]  R. Wagner On the growth of germanium dendrites , 1960 .

[21]  A. Hellawell,et al.  The mechanism of silicon modification in aluminum-silicon alloys: Impurity induced twinning , 1987 .

[22]  K. A. Jackson,et al.  Transparent compounds that freeze like metals , 1965 .

[23]  R. Elliott Chapter 2 – The eutectic solidification process , 1983 .

[24]  A. Hellawell,et al.  The microstructure and crystallography of aluminium—silicon eutectic alloys , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[25]  L. Ratke,et al.  Interplay Between Melt Flow and the 3D Distribution and Morphology of Fe-Rich Phases in AlSi Alloys , 2015, Metallurgical and Materials Transactions A.

[26]  S. Amelinckx,et al.  Stacking Fault Energy in Silicon , 1962 .

[27]  L. Hogan,et al.  Aluminium grain structures in Al-Si eutectic alloys , 1987 .