Carbonation rate of alkali-activated concretes and high-volume SCM concretes: a literature data analysis by RILEM TC 281-CCC

[1]  Farshad Rajabipour,et al.  Machine learning in concrete science: applications, challenges, and best practices , 2022, npj Computational Materials.

[2]  Christopher M. Childs,et al.  Advancing cement-based materials design through data science approaches , 2021, RILEM Technical Letters.

[3]  H. Brouwers,et al.  The role of recycled waste glass incorporation on the carbonation behaviour of sodium carbonate activated slag mortar , 2021, Journal of Cleaner Production.

[4]  P. Van den Heede,et al.  Effects of Accelerated Carbonation Testing and by-Product Allocation on the CO2-Sequestration-to-Emission Ratios of Fly Ash-Based Binder Systems , 2021, Applied Sciences.

[5]  G. Ma,et al.  Approaches to enhance the carbonation resistance of fly ash and slag based alkali-activated mortar- experimental evaluations , 2021 .

[6]  C. Andrade,et al.  Understanding the carbonation of concrete with supplementary cementitious materials: a critical review by RILEM TC 281-CCC , 2020, Materials and Structures.

[7]  Jaehyun Lee,et al.  Assessment of Optimum CaO Content Range for High Volume FA Based Concrete Considering Durability Properties , 2020, Applied Sciences.

[8]  R. Mejía de Gutiérrez,et al.  Alkali-activated concretes based on high unburned carbon content fly ash: carbonation and corrosion performance , 2020, European Journal of Environmental and Civil Engineering.

[9]  A. Koenig,et al.  Alkalinity and Its Consequences for the Performance of Steel-Reinforced Geopolymer Materials , 2020, Molecules.

[10]  Arnaud Castel,et al.  RILEM TC 247-DTA round robin test: carbonation and chloride penetration testing of alkali-activated concretes , 2020, Materials and Structures.

[11]  R. Robayo-Salazar,et al.  Carbonation-induced corrosion of alkali-activated binary concrete based on natural volcanic pozzolan , 2020 .

[12]  E. Zornoza,et al.  Corrosion resistance of steel reinforcements embedded in alkali activated ground granulated SiMn slag mortars , 2020, Construction and Building Materials.

[13]  A. Al-Tabbaa,et al.  Performance of magnesia-modified sodium carbonate-activated slag/fly ash concrete , 2019, Cement and Concrete Composites.

[14]  V. Ducman,et al.  RILEM TC 247-DTA round robin test: mix design and reproducibility of compressive strength of alkali-activated concretes , 2019, Materials and Structures.

[15]  Wei Chen,et al.  Experimental Study of Carbonation Resistance of Alkali-Activated Slag Concrete , 2019, ACI Materials Journal.

[16]  M. Nedeljković Carbonation mechanism of alkali-activated fly ash and slag materials: In view of long-term performance predictions , 2019 .

[17]  R. Mejía de Gutiérrez,et al.  Carbonation of hybrid concrete with high blast furnace slag content and its impact on structural steel corrosion , 2019, Materiales de Construcción.

[18]  Zhenguo Shi,et al.  Effect of alkali dosage and silicate modulus on carbonation of alkali-activated slag mortars , 2018, Cement and Concrete Research.

[19]  Yongsheng Ji,et al.  Advances in understanding and analyzing the anti-diffusion behavior in complete carbonation zone of MSWI bottom ash-based alkali-activated concrete , 2018, Construction and Building Materials.

[20]  F. Winnefeld,et al.  Carbonation resistance of mortar produced with alternative cements , 2018, Materials and Structures.

[21]  J. Deventer,et al.  Impact of water content on the performance of alkali-activated slag concretes , 2018 .

[22]  Juan He,et al.  Study on improvement of carbonation resistance of alkali-activated slag concrete , 2018, Construction and Building Materials.

[23]  Arnaud Castel,et al.  Effect of MgO and Na2SiO3on the carbonation resistance of alkali activated slag concrete , 2018, Magazine of Concrete Research.

[24]  Yongsheng Ji,et al.  Use of slaked lime and Portland cement to improve the resistance of MSWI bottom ash-GBFS geopolymer concrete against carbonation , 2018 .

[25]  S. Li,et al.  Carbonation resistance of fly ash and blast furnace slag based geopolymer concrete , 2018 .

[26]  Majid Rostami,et al.  An assessment on parameters affecting the carbonation of alkali-activated slag concrete , 2017 .

[27]  Frank Winnefeld,et al.  Carbonation of calcium sulfoaluminate mortars , 2017 .

[28]  A. Leemann,et al.  Carbonation of concrete: the role of CO2 concentration, relative humidity and CO2 buffer capacity , 2017 .

[29]  Christoph Gehlen,et al.  Performance‐based durability design, carbonation part 2 – Classification of concrete , 2016 .

[30]  Martin Cyr,et al.  Carbonation in the pore solution of metakaolin-based geopolymer , 2016 .

[31]  B. Lothenbach,et al.  Thermodynamic modelling of alkali-activated slag cements , 2015 .

[32]  A. Leemann,et al.  Relation between carbonation resistance, mix design and exposure of mortar and concrete , 2015 .

[33]  J. Herterich Microstructure and phase assemblage of low-clinker cements during the early stages of carbonation , 2015, Cement and Concrete Research.

[34]  John L. Provis,et al.  Accelerated carbonation testing of alkali-activated slag/metakaolin blended concretes: effect of exposure conditions , 2015 .

[35]  Keun-Hyeok Yang,et al.  Carbonation Characteristics of Alkali-Activated Blast-Furnace Slag Mortar , 2014 .

[36]  Erez N. Allouche,et al.  Corrosion of steel bars induced by accelerated carbonation in low and high calcium fly ash geopolymer concretes , 2014 .

[37]  John L. Provis,et al.  Natural carbonation of aged alkali-activated slag concretes , 2014 .

[38]  John L. Provis,et al.  Durability of Alkali‐Activated Materials: Progress and Perspectives , 2014 .

[39]  N. Belie,et al.  A service life based global warming potential for high-volume fly ash concrete exposed to carbonation , 2014 .

[40]  John L. Provis,et al.  Accelerated carbonation testing of alkali-activated binders significantly underestimates service lif , 2012 .

[41]  David W. Law,et al.  Durability assessment of alkali activated slag (AAS) concrete , 2012 .

[42]  V. Rose,et al.  Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags , 2010 .

[43]  S. Al-Otaibi,et al.  Durability of concrete incorporating GGBS activated by water-glass , 2008 .

[44]  K. Sisomphon,et al.  Carbonation rates of concretes containing high volume of pozzolanic materials , 2007 .

[45]  C. Atiş ACCELERATED CARBONATION AND TESTING OF CONCRETE MADE WITH FLY ASH , 2003 .

[46]  Jay G. Sanjayan,et al.  Resistance of alkali-activated slag concrete to carbonation , 2001 .

[47]  Tarja Häkkinen,et al.  The influence of slag content on the microstructure, permeability and mechanical properties of concrete: Part 2 technical properties and theoretical examinations , 1993 .

[48]  Tarja Häkkinen,et al.  THE INFLUENCE OF SLAG CONTENT ON THE MICROSTRUCTURE, PERMEABILITY AND MECHANICAL PROPERTIES OF CONCRETE. PART 1: MICROSTRUCTURAL STUDIES AND BASIC MECHANICAL PROPERTIES , 1993 .

[49]  Michael N. Fardis,et al.  FUNDAMENTAL MODELING AND EXPERIMENTAL INVESTIGATION OF CONCRETE CARBONATION , 1991 .

[50]  Edward J. Garboczi,et al.  Percolation of phases in a three-dimensional cement paste microstructural model , 1991 .

[51]  C. Page,et al.  Aspects of the electrochemistry of steel in concrete , 1982, Nature.

[52]  Arnaud Castel,et al.  Passivity of embedded reinforcement in carbonated low-calcium fly ash-based geopolymer concrete , 2018 .

[53]  O. Çopuroğlu,et al.  Chloride Ingress of Carbonated Blast Furnace Slag Cement Mortars , 2018 .

[54]  Arnaud Castel,et al.  Carbonation of a low-calcium fly ash geopolymer concrete , 2017 .

[55]  Nele De Belie,et al.  Carbonation of slag concrete: Effect of the cement replacement level and curing on the carbonation coefficient – Effect of carbonation on the pore structure , 2013 .

[56]  Erich D. Rodríguez,et al.  Effect of binder content on the performance of alkali-activated slag concretes , 2011 .

[57]  W. Brameshuber,et al.  Erarbeitung von Anwendungsregeln fuer Huettensand als Betonzusatzstoff gemaess der harmonisierten Europaeischen Stoffnorm , 2010 .

[58]  Jan Deja,et al.  Carbonation aspects of alkali activated slag mortars and concretes , 2002 .

[59]  T. C. Powers,et al.  Physical Properties of Cement Paste , 1960 .