Liaison and Castelnuovo-Mumford regularity

In this article we establish bounds for the Castelnuovo-Mumford regularity of projective schemes in terms of the degrees of their defining equations. The main new ingredient in our proofs is to show that generic residual intersections of complete intersection rational singularities again have rational singularities. When applied to the theory of residual intersections this circle of ideas also sheds new light on some known classes of free resolutions of residual ideals.

[1]  Craig Huneke,et al.  The dimension and components of symmetric algebras , 1986 .

[2]  F. E. Zein Complexe dualisant et applications à la classe fondamentale d'un cycle , 1978 .

[3]  Winfried Bruns,et al.  The resolution of the generic residual intersection of a complete intersection , 1990 .

[4]  C. Huneke On the Symmetric and Rees Algebra of an Ideal Generated by a d-sequence , 1980 .

[5]  Florian Enescu On the Behavior of F-Rational Rings under Flat Base Change , 2000 .

[6]  J. Lipman Dualizing sheaves, differentials and residues on algebraic varieties , 1984 .

[7]  B. Ulrich,et al.  The structure of linkage , 1987 .

[8]  B. Ulrich,et al.  A Family of Complexes Associated to an Almost Alternating Map, with Applications to Residual Intersections , 1992 .

[9]  B. Ulrich,et al.  Residual intersections. , 1988 .

[10]  Marc Chardin,et al.  Applications of Some Properties of the Canonical Module in Computational Projective Algebraic Geometry , 2000, J. Symb. Comput..

[11]  L. Illusie,et al.  Relèvements modulop2 et décomposition du complexe de de Rham , 1987 .

[12]  G. Kempf,et al.  Images of homogeneous vector bundles and varieties of complexes , 1975 .

[13]  M. Hochster,et al.  $F$-regularity, test elements, and smooth base change , 1994 .

[14]  B. Ulrich,et al.  If the Socle fits , 1992 .

[15]  B. M. Fulk MATH , 1992 .

[16]  Lucien Szpiro,et al.  Liaison des variétés algébriques. I , 1974 .

[17]  J. Jouanolou,et al.  Théorèmes de Bertini et applications , 1983 .

[18]  E. Kunz,et al.  Regular Differential Forms , 1988 .

[19]  T. Ohsawa Vanishing Theorems on Complete Kähler Manifolds , 1984 .

[20]  F. E. Zein La classe fondamentale d'un cycle , 1974 .

[21]  R. Elkik Singularites rationnelles et deformations , 1978 .

[22]  H. Hironaka Smoothing of Algebraic Cycles of Small Dimensions , 1968 .

[23]  J. Boutot Singularités rationnelles et quotients par les groupes réductifs , 1987 .

[24]  B. Ulrich,et al.  Divisor Class Groups and Deformations , 1985 .

[25]  R. Buchweitz Contributions à la théorie des singularités : Déformations de Diagrammes, Déploiements et Singularités très rigides, Liaison algébrique , 1981 .

[26]  G. Kempf On the collapsing of homogeneous bundles , 1976 .

[27]  Karen E. Smith A tight closure proof of Fujita's freeness conjecture for very ample line bundles , 2000 .

[28]  Karen E. Smith F-rational rings have rational singularities , 1997 .

[29]  G. Valla On the Symmetric and Rees algebras of an ideal , 1979 .

[30]  J. D. Velez Openness of the F-rational locus and smooth base change , 1995 .

[31]  Kei-ichi Watanabe,et al.  The injectivity of Frobenius acting on cohomology and local cohomology modules , 1996 .

[32]  Karen E. Smith Fujita's freeness conjecture in terms of local cohomology , 1997 .

[33]  G. Kempf,et al.  On the Geometry of a Theorem of Riemann , 1973 .

[34]  Nobuo Hara A characterization of rational singularities in terms of injectivity of Frobenius maps , 1998 .

[35]  S. Kovács A characterization of rational singularities , 2000 .

[36]  J. Kollár Higher direct images of dualizing sheaves. II , 1986 .

[37]  Kei-ichi Watanabe,et al.  A Characterization of F -Regularity in Terms of F -Purity , 1989 .

[38]  A. Bertram,et al.  Vanishing theorems, a theorem of Severi, and the equations defining projective varieties , 1991 .