60 GHz indoor WLANs: insights into performance and power consumption

[1]  Xinyu Zhang,et al.  Beam-forecast: Facilitating mobile 60 GHz networks via model-driven beam steering , 2017, IEEE INFOCOM 2017 - IEEE Conference on Computer Communications.

[2]  Upamanyu Madhow,et al.  Noncoherent mmWave Path Tracking , 2017, HotMobile.

[3]  Omid Salehi-Abari,et al.  Millimeter Wave Communications: From Point-to-Point Links to Agile Network Connections , 2016, HotNets.

[4]  Parameswaran Ramanathan,et al.  OpenMili: a 60 GHz software radio platform with a reconfigurable phased-array antenna , 2016, MobiCom.

[5]  Edward W. Knightly,et al.  Mobility resilience and overhead constrained adaptation in directional 60 GHz WLANs: protocol design and system implementation , 2016, MobiHoc.

[6]  Parameswaran Ramanathan,et al.  BeamSpy: Enabling Robust 60 GHz Links Under Blockage , 2016, NSDI.

[7]  Jörg Widmer,et al.  Boon and bane of 60 GHz networks: practical insights into beamforming, interference, and frame level operation , 2015, CoNEXT.

[8]  Li Sun,et al.  Improving Connectivity, Coverage, and Capacity in 60 GHz Indoor WLANs Using Relays , 2015, S3@MobiCom.

[9]  Dimitrios Koutsonikolas,et al.  Power-throughput tradeoffs of 802.11n/ac in smartphones , 2015, 2015 IEEE Conference on Computer Communications (INFOCOM).

[10]  Parameswaran Ramanathan,et al.  60 GHz Indoor Networking through Flexible Beams: A Link-Level Profiling , 2015, SIGMETRICS 2015.

[11]  Rakesh Taori,et al.  Point-to-multipoint in-band mmwave backhaul for 5G networks , 2015, IEEE Communications Magazine.

[12]  M.Eng. Ir. Gamantyo Hendrantoro,et al.  PENGUKURAN RESPON IMPULS KANAL RADIO MIMO 2 X 2 PADA FREKUENSI 2,4 GHz MENGGUNAKAN WARP (WIRELESS OPEN ACCESS RESEARCH PLATFORM) , 2014 .

[13]  T. Rappaport,et al.  Millimeter Wave Wireless Communications , 2014 .

[14]  Ben Y. Zhao,et al.  Demystifying 60GHz outdoor picocells , 2014, MobiCom.

[15]  Ben Y. Zhao,et al.  Cutting the cord: a robust wireless facilities network for data centers , 2014, MobiCom.

[16]  Parth H. Pathak,et al.  A first look at 802.11ac in action: Energy efficiency and interference characterization , 2014, 2014 IFIP Networking Conference.

[17]  Mohamed Abouelseoud,et al.  The Effect of Human Blockage on the Performance of Millimeter-Wave Access Link for Outdoor Coverage , 2013, 2013 IEEE 77th Vehicular Technology Conference (VTC Spring).

[18]  Shihua Zhu,et al.  Link blockage analysis for indoor 60ghz radio systems , 2012 .

[19]  Dimitrios Koutsonikolas,et al.  A first look at 802.11n power consumption in smartphones , 2012, PINGEN '12.

[20]  Ben Y. Zhao,et al.  Mirror mirror on the ceiling: flexible wireless links for data centers , 2012, SIGCOMM '12.

[21]  Feng Qian,et al.  A close examination of performance and power characteristics of 4G LTE networks , 2012, MobiSys '12.

[22]  Kishore Ramachandran,et al.  On 60 GHz Wireless Link Performance in Indoor Environments , 2012, PAM.

[23]  Raghuraman Mudumbai,et al.  Interference Analysis for Highly Directional 60-GHz Mesh Networks: The Case for Rethinking Medium Access Control , 2011, IEEE/ACM Transactions on Networking.

[24]  Paramvir Bahl,et al.  Augmenting data center networks with multi-gigabit wireless links , 2011, SIGCOMM.

[25]  David Wetherall,et al.  Demystifying 802.11n power consumption , 2010 .

[26]  Raghuraman Mudumbai,et al.  Distributed Coordination with Deaf Neighbors: Efficient Medium Access for 60 GHz Mesh Networks , 2010, 2010 Proceedings IEEE INFOCOM.

[27]  Upamanyu Madhow,et al.  Blockage and directivity in 60 GHz wireless personal area networks: from cross-layer model to multihop MAC design , 2009, IEEE Journal on Selected Areas in Communications.

[28]  Roman Maslennikov,et al.  Experimental investigations of 60 GHz WLAN systems in office environment , 2009, IEEE Journal on Selected Areas in Communications.

[29]  Peter F. M. Smulders,et al.  Statistical Characterization of 60-GHz Indoor Radio Channels , 2009, IEEE Transactions on Antennas and Propagation.

[30]  Raghuraman Mudumbai,et al.  Medium Access Control for 60 GHz Outdoor Mesh Networks with Highly Directional Links , 2009, IEEE INFOCOM 2009.

[31]  G. E. Zein,et al.  Influence of the human activity on wide-band characteristics of the 60 GHz indoor radio channel , 2004, IEEE Transactions on Wireless Communications.

[32]  Theodore S. Rappaport,et al.  In-building wideband partition loss measurements at 2.5 and 60 GHz , 2004, IEEE Transactions on Wireless Communications.

[33]  Theodore S. Rappaport,et al.  Spatial and temporal characteristics of 60-GHz indoor channels , 2002, IEEE J. Sel. Areas Commun..

[34]  Takeshi Manabe,et al.  Estimation of propagation-path visibility for indoor wireless LAN systems under shadowing condition by human bodies , 1998, VTC '98. 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat. No.98CH36151).

[35]  Luis M. Correia,et al.  Characterisation of propagation in 60 GHz radio channels (invited) , 2004 .

[36]  B. Langen,et al.  Reflection and transmission behaviour of building materials at 60 GHz , 1994, 5th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Wireless Networks - Catching the Mobile Future..

[37]  Theodore S. Rappaport,et al.  Broadband Millimeter-Wave Propagation Measurements and Models Using Adaptive-Beam Antennas for Outdoor Urban Cellular Communications , 2013, IEEE Transactions on Antennas and Propagation.