On an algorithm solving two-level programming problems with nonunique lower level solutions

In the paper, an algorithm is presented for solving two-level programming problems. This algorithm combines a direction finding problem with a regularization of the lower level problem. The upper level objective function is included in the regularzation to yield uniqueness of the follower's solution set. This is possible if the problem functions are convex and the upper level objective function has a positive definite Hessian. The computation of a direction of descent and of the step size is discussed in more detail. Afterwards the convergence proof is given.Last but not least some remarks and examples describing the difficulty of the inclusion of upper-level constraints also depending on the variables of the lower level are added.

[1]  Jacques Gauvin,et al.  A necessary and sufficient regularity condition to have bounded multipliers in nonconvex programming , 1977, Math. Program..

[2]  Jong-Shi Pang,et al.  Minimization of Locally Lipschitzian Functions , 1991, SIAM J. Optim..

[3]  A. Shapiro Sensitivity analysis of nonlinear programs and differentiability properties of metric projections , 1988 .

[4]  J. Pang,et al.  Existence of optimal solutions to mathematical programs with equilibrium constraints , 1988 .

[5]  Patrice Marcotte,et al.  Network design problem with congestion effects: A case of bilevel programming , 1983, Math. Program..

[6]  William Hogan,et al.  Directional Derivatives for Extremal-Value Functions with Applications to the Completely Convex Case , 1973, Oper. Res..

[7]  Wolfgang Oeder Ein Verfahren zur Lösung von Zwei-Ebenen-Optimierungsaufgaben in Verbindung mit der Untersuchung von chemischen Gleichgewichten , 1988 .

[8]  Jonathan F. Bard,et al.  Geometric and algorithmic developments for a hierarchical planning problem , 1985 .

[9]  Ikuyo Kaneko On some recent engineering applications of complementarity problems , 1982 .

[10]  Jonathan F. BARD,et al.  Convex two-level optimization , 1988, Math. Program..

[11]  Paul H. Calamai,et al.  Bilevel and multilevel programming: A bibliography review , 1994, J. Glob. Optim..

[12]  S. Dempe A necessary and a sufficient optimality condition for bilevel programming problems , 1992 .

[13]  William R. Smith,et al.  Chemical Reaction Equilibrium Analysis: Theory and Algorithms , 1982 .

[14]  K. Jittorntrum Solution point differentiability without strict complementarity in nonlinear programming , 1984 .

[15]  S. M. Robinson Local structure of feasible sets in nonlinear programming, Part III: Stability and sensitivity , 1987 .

[16]  R. Lucchetti,et al.  Existence theorems of equilibrium points in stackelberg , 1987 .

[17]  Eitaro Aiyoshi,et al.  Double penalty method for bilevel optimization problems , 1992, Ann. Oper. Res..

[18]  A. Mayne Parametric Optimization: Singularities, Pathfollowing and Jumps , 1990 .

[19]  Stephan Dempe,et al.  Directional differentiability of optimal solutions under Slater's condition , 1993, Math. Program..

[20]  J. Morgan,et al.  e-regularized two-level optimization problems: approximation and existence results , 1988 .