Effective Stress and Vector-valued Orientational Distribution Functions

The original Kachanov—Rabotnov damage variable is inherently microplane-based and should be expressed by a scalar-valued orientation distribution function (ODF), and the corresponding effective stress is a vector-valued ODF. The analysis of vector-valued ODFs is established in this article in the spirit of the analysis of scalar-valued ODFs by Kanatani, K. (1984a). Distribution of Directional Data and Fabric Tensors, International Journal of Engineering Science, 22: 149—164 and Kanatani, K. (1984b). Stereological Determination of Structural Anisotropy, International Journal of Engineering Science, 22: 531—546. Explicit expansions of vector-valued ODFs up to the sixth-order have been developed, and the relationship of fabric tensors of different order is addressed. The fabric tensors and expansion of the Kachanov—Rabotnov effective stress vector can be fully determined by the scalar-valued ODF characterizing the microplane damage. The second-order effective stress and damage tensors of Murakami, S. (1988). Mechanical Modeling of Material Damage, ASME Journal of Engineering Materials and Technology, 55: 280—286 are related to the second-order expansion of the Kachanov—Rabotnov effective stress vector. Therefore, the analysis of vector-valued ODFs furnishes a rigorous and unified mathematical basis for the damage theory of Kachanov, L.M. (1958). Time of the Rupture Process under Creep Conditions, Izv. Akad. Nauk., USSR. Otd. Tekhn. Nauk. 8: 26—31, Rabotnov, I.N. (1963). On the Equations of State for Creep, Progress in Applied Mechanics, the Prager Anniversary, 8: 307—315, and Murakami, S. (1988). Mechanical Modeling of Material Damage, ASME Journal of Engineering Materials and Technology, 55: 280—286.

[1]  J. Betten,et al.  On Damage Effective Stress and Equivalence Hypothesis , 1996 .

[2]  A. Ganczarski,et al.  Notes on Damage Effect Tensors of Two-Scalar Variables , 2004 .

[3]  Ekkehard Ramm,et al.  A comparison of damage models formulated on different material scales , 2003 .

[4]  Qiang Yang,et al.  Microplane-damage-based Effective Stress and Invariants , 2005 .

[5]  S. Murakami,et al.  Mechanical Modeling of Material Damage , 1988 .

[6]  G. Swoboda,et al.  An energy-based damage model of geomaterials-I. Formulation and numerical results , 1999 .

[7]  Li Zhongkui,et al.  An explicit expression of second-order fabric-tensor dependent elastic compliance tensor , 2001 .

[8]  Qiang Yang,et al.  Relationship of crack fabric tensors of different orders , 2004 .

[9]  Jean Lemaitre,et al.  Anisotropic damage law of evolution , 2000 .

[10]  Kanatani Ken-Ichi DISTRIBUTION OF DIRECTIONAL DATA AND FABRIC TENSORS , 1984 .

[11]  K. Kanatani Stereological determination of structural anisotropy , 1984 .

[12]  Jacek Skrzypek,et al.  Modeling of Material Damage and Failure of Structures: Theory And Applications , 1998 .

[13]  Dusan Krajcinovic,et al.  Damage tensors and the crack density distribution , 1993 .

[14]  Ignacio Carol,et al.  Damage and plasticity in microplane theory , 1997 .

[15]  G. Swoboda,et al.  An energy-based damage model of geomaterials—II. Deductionof damage evolution laws , 1999 .

[16]  A. Ganczarski,et al.  Anisotropic behaviour of damaged materials , 2003 .

[17]  J. Betten Net-stress analysis in creep mechanics , 1982 .

[18]  Qiang Yang,et al.  On the structure of anisotropic damage yield criteria , 2005 .

[19]  Jean Lemaitre,et al.  A Course on Damage Mechanics , 1992 .