Linear neural network based blind equalization

Abstract This letter considers the problem of blind equalization in digital communications by using linear neural network. Unlike most adaptive blind equalization methods which are based on matrix decomposition or the Hankel property of matrix, we give a stochastic approximate learning algorithm for the neural network according to the property of the correlation matrices of the transmitted symbols. The network outputs provide an estimation of the source symbols, while the weight matrix of network estimates the inverse of the channel matrix. Simulation results demonstrate the performance and validity of the proposed approach for blind equalization.

[1]  Dirk T. M. Slock,et al.  Blind fractionally-spaced equalization, perfect-reconstruction filter banks and multichannel linear prediction , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[2]  Hui Liu,et al.  Closed-form blind symbol estimation in digital communications , 1995, IEEE Trans. Signal Process..

[3]  Ananthram Swami,et al.  On estimating noncausal nonminimum phase ARMA models of non-Gaussian processes , 1990, IEEE Trans. Acoust. Speech Signal Process..

[4]  Jennie Si,et al.  Blind equalization with a linear feedforward neural network , 1997, ESANN.

[5]  Benjamin Friedlander,et al.  Asymptotically optimal estimation of MA and ARMA parameters of non-Gaussian processes from high-order moments , 1990 .

[6]  Chrysostomos L. Nikias,et al.  ARMA bispectrum approach to nonminimum phase system identification , 1988, IEEE Trans. Acoust. Speech Signal Process..

[7]  Jerry M. Mendel,et al.  ARMA parameter estimation using only output cumulants , 1990, IEEE Trans. Acoust. Speech Signal Process..

[8]  Eric Moulines,et al.  Subspace methods for the blind identification of multichannel FIR filters , 1995, IEEE Trans. Signal Process..

[9]  Hui Liu,et al.  A deterministic approach to blind symbol estimation , 1994 .

[10]  W. Qiu,et al.  A GCD Method for Blind Channel Identification, , 1997, Digit. Signal Process..

[11]  Lang Tong,et al.  Blind identification and equalization based on second-order statistics: a time domain approach , 1994, IEEE Trans. Inf. Theory.

[12]  Jitendra K. Tugnait,et al.  Identification of non-minimum phase linear stochastic systems , 1986, Autom..

[13]  Shun-ichi Amari,et al.  Adaptive blind signal processing-neural network approaches , 1998, Proc. IEEE.

[14]  Jerry M. Mendel,et al.  Identification of nonminimum phase systems using higher order statistics , 1989, IEEE Trans. Acoust. Speech Signal Process..

[15]  Jitendra K. Tugnait,et al.  Identification of linear stochastic systems via second- and fourth-order cumulant matching , 1987, IEEE Trans. Inf. Theory.

[16]  T. Kailath,et al.  A least-squares approach to blind channel identification , 1995, IEEE Trans. Signal Process..

[17]  Yingbo Hua,et al.  Fast maximum likelihood for blind identification of multiple FIR channels , 1996, IEEE Trans. Signal Process..

[18]  Björn E. Ottersten,et al.  Statistical analysis of a subspace method for blind channel identification , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.