Thickness-dependent frictional behavior of topological insulator Bi2Se3 nanoplates

[1]  Veena Misra,et al.  Flexible thermoelectric generators for body heat harvesting – Enhanced device performance using high thermal conductivity elastomer encapsulation on liquid metal interconnects , 2020 .

[2]  E. Meyer,et al.  Mechanical dissipation via image potential states on a topological insulator surface , 2019, Nature Materials.

[3]  M. Cattelan,et al.  Electrochemical Modification and Characterization of Topological Insulator Single Crystals. , 2019, Langmuir : the ACS journal of surfaces and colloids.

[4]  W. Knap,et al.  Probing topological insulators surface states via plasma-wave Terahertz detection , 2018, 1804.11261.

[5]  Mehmet C. Öztürk,et al.  Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics , 2017 .

[6]  D. K. Aswal,et al.  Tellurium-free thermoelectrics: Improved thermoelectric performance of n-type Bi2Se3 having multiscale hierarchical architecture , 2017 .

[7]  N. V. Pervukhina,et al.  Physical vapor transport growth and morphology of Bi2Se3 microcrystals , 2016 .

[8]  W. Knap,et al.  Plasma-Wave Terahertz Detection Mediated by Topological Insulators Surface States. , 2016, Nano letters.

[9]  J. Krim David Adler Lectureship Award Talk: Friction and energy dissipation mechanisms in adsorbed , 2015 .

[10]  Jorge Quereda,et al.  Single-layer MoS2 roughness and sliding friction quenching by interaction with atomically flat substrates , 2014, 1407.2202.

[11]  Yalin Dong Effects of substrate roughness and electron–phonon coupling on thickness-dependent friction of graphene , 2014 .

[12]  Kang L. Wang,et al.  Direct atom-by-atom chemical identification of nanostructures and defects of topological insulators. , 2013, Nano letters.

[13]  Xi-Qiao Feng,et al.  Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale. , 2012, Nature materials.

[14]  Khiam Aik Khor,et al.  Interface driven energy filtering of thermoelectric power in spark plasma sintered Bi(2)Te(2.7)Se(0.3) nanoplatelet composites. , 2012, Nano letters.

[15]  J. Krim Friction and energy dissipation mechanisms in adsorbed molecules and molecularly thin films , 2012 .

[16]  M. Weinert,et al.  Spiral growth without dislocations: molecular beam epitaxy of the topological insulator Bi2Se3 on epitaxial graphene/SiC(0001). , 2012, Physical review letters.

[17]  L. Molenkamp,et al.  Comparative study of the microstructure of Bi 2Se 3 thin films grown on Si(111) and InP(111) substrates , 2012 .

[18]  Jun Li,et al.  Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route , 2012 .

[19]  M. Dresselhaus,et al.  Enhanced thermoelectric properties of solution grown Bi2Te(3-x)Se(x) nanoplatelet composites. , 2012, Nano letters.

[20]  Y. Min,et al.  Quick, controlled synthesis of ultrathin Bi2Se3 nanodiscs and nanosheets. , 2012, Journal of the American Chemical Society.

[21]  Victor V. Atuchin,et al.  Formation of Inert Bi2Se3(0001) Cleaved Surface , 2011 .

[22]  Jun Zhang,et al.  Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets. , 2011, Nano letters.

[23]  M. Shur,et al.  Low-frequency current fluctuations in "graphene-like" exfoliated thin-films of bismuth selenide topological insulators. , 2011, ACS nano.

[24]  Q. Xue,et al.  Electron interaction-driven insulating ground state in Bi 2 Se 3 topological insulators in the two-dimensional limit , 2010, 1011.1055.

[25]  Liang Fu,et al.  Topological crystalline insulators. , 2010, Physical review letters.

[26]  Guang Wang,et al.  Intrinsic Topological Insulator Bi2Te3 Thin Films on Si and Their Thickness Limit , 2010, Advanced materials.

[27]  Lidong Chen,et al.  Enhancing thermoelectric performance of bismuth selenide films by constructing a double-layer nanostructure , 2010 .

[28]  A. Datta,et al.  Facile Chemical Synthesis of Nanocrystalline Thermoelectric Alloys Based on Bi−Sb−Te−Se , 2010 .

[29]  W. Dang,et al.  Few-layer nanoplates of Bi 2 Se 3 and Bi 2 Te 3 with highly tunable chemical potential. , 2010, Nano letters.

[30]  Joel E Moore,et al.  The birth of topological insulators , 2010, Nature.

[31]  Vivek Goyal,et al.  Exfoliation and characterization of bismuth telluride atomic quintuples and quasi-two-dimensional crystals. , 2010, Nano letters.

[32]  P. Hu,et al.  Selective synthesis of Bi2Se3 nanostructures by solvothermal reaction , 2010 .

[33]  Zhi-Xun Shen,et al.  Topological insulator nanowires and nanoribbons. , 2009, Nano letters.

[34]  Xiangshan Chen,et al.  Crossover of the three-dimensional topological insulator Bi 2 Se 3 to the two-dimensional limit , 2009, 0911.3706.

[35]  R J Cava,et al.  Observation of time-reversal-protected single-dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3. , 2009, Physical review letters.

[36]  F. Meier,et al.  A tunable topological insulator in the spin helical Dirac transport regime , 2009, Nature.

[37]  Joel E. Moore,et al.  Topological insulators: The next generation , 2009 .

[38]  Xi Dai,et al.  Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface , 2009 .

[39]  A. Bostwick,et al.  Friction and dissipation in epitaxial graphene films. , 2009, Physical review letters.

[40]  Liang Fu,et al.  Topological insulators in three dimensions. , 2006, Physical review letters.

[41]  P. O’Brien,et al.  Deposition of bismuth chalcogenide thin films using novel single-source precursors by metal-organic chemical vapor deposition , 2004 .

[42]  J. Frenken,et al.  Superlubricity of graphite. , 2004, Physical review letters.

[43]  Hubert M. Pollock,et al.  Interpretation of force curves in force microscopy , 1993 .

[44]  V. Piacente,et al.  Vaporization study of solid bismuth selenide (Bi2Se3) , 1984 .