Energy-Constrained Private and Quantum Capacities of Quantum Channels

This paper establishes a general theory of energy-constrained quantum and private capacities of quantum channels. We begin by defining various energy-constrained communication tasks, including quantum communication with a uniform energy constraint, entanglement transmission with an average energy constraint, private communication with a uniform energy constraint, and secret key transmission with an average energy constraint. We develop several code conversions, which allow us to conclude non-trivial relations between the capacities corresponding to the above tasks. We then show how the regularized, energy-constrained coherent information is equal to the capacity for the first two tasks and is an achievable rate for the latter two tasks, whenever the energy observable satisfies the Gibbs condition of having a well-defined thermal state for all temperatures and the channel satisfies a finite output-entropy condition. For degradable channels satisfying these conditions, we find that the single-letter energy-constrained coherent information is equal to all of the capacities. We finally apply our results to degradable quantum Gaussian channels and recover several results already established in the literature (in some cases, we prove new results in this domain). Contrary to what may appear from some statements made in the literature recently, proofs of these results do not require the solution of any kind of minimum output entropy conjecture or entropy photon-number inequality.

[1]  Howard Barnum,et al.  On quantum fidelities and channel capacities , 2000, IEEE Trans. Inf. Theory.

[2]  S. Lloyd,et al.  Classical capacity of the lossy bosonic channel: the exact solution. , 2003, Physical review letters.

[3]  M. Wolf,et al.  Quantum capacities of bosonic channels. , 2006, Physical review letters.

[4]  Yuen,et al.  Ultimate information carrying limit of quantum systems. , 1993, Physical review letters.

[5]  G. Wornell,et al.  Private-Capacity Bounds for Bosonic Wiretap Channels , 2012, 1202.1126.

[6]  Saikat Guha,et al.  Capacity of the bosonic wiretap channel and the Entropy Photon-Number Inequality , 2008, 2008 IEEE International Symposium on Information Theory.

[7]  Alexander S. Holevo,et al.  On classical capacities of infinite-dimensional quantum channels , 2013, Probl. Inf. Transm..

[8]  Alexander Semenovich Holevo,et al.  Continuous Ensembles and the Capacity of Infinite-Dimensional Quantum Channels , 2006 .

[9]  Ujjwal Sen,et al.  Capacities of quantum channels for massive bosons and fermions. , 2005, Physical review letters.

[10]  A. Holevo Entanglement-Assisted Capacities of Constrained Quantum Channels , 2004 .

[11]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[12]  Saikat Guha,et al.  Multiple-user quantum information theory for optical communication channels , 2008 .

[13]  Ujjwal Sen,et al.  Capacities of noiseless quantum channels for massive indistinguishable particles : Bosons versus fermions , 2007 .

[14]  P. Knight,et al.  Introductory quantum optics , 2004 .

[15]  Masahide Sasaki,et al.  Error and Secrecy Exponents for Wiretap Channels under Two-Fold Cost Constraints , 2016, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[16]  V. Giovannetti,et al.  Degradability of bosonic Gaussian channels , 2006, quant-ph/0603257.

[17]  Gerd Leuchs,et al.  Quantum information with continuous variables of atoms and light , 2007 .

[18]  T. Tao Topics in Random Matrix Theory , 2012 .

[19]  Ignacio Cirac,et al.  Quantum Information with Fermionic Gaussian States , 2013 .

[20]  Mark M. Wilde,et al.  Capacities of Quantum Amplifier Channels , 2016, ArXiv.

[21]  A. Winter,et al.  Quantum privacy and quantum wiretap channels , 2004 .

[22]  Sergey Bravyi Classical capacity of fermionic product channels , 2005 .

[23]  Peter W. Shor,et al.  Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.

[24]  S. Lloyd Capacity of the noisy quantum channel , 1996, quant-ph/9604015.

[25]  Michael D. Westmoreland,et al.  Quantum Privacy and Quantum Coherence , 1997, quant-ph/9709058.

[26]  J. Eisert,et al.  Multi-mode bosonic Gaussian channels , 2008, 0804.0511.

[27]  Alexander S. Holevo,et al.  On approximation of infinite-dimensional quantum channels , 2008, Probl. Inf. Transm..

[28]  Gerardo Adesso,et al.  Continuous Variable Quantum Information: Gaussian States and Beyond , 2014, Open Syst. Inf. Dyn..

[29]  R. Werner,et al.  Tema con variazioni: quantum channel capacity , 2003, quant-ph/0311037.

[30]  Andreas J. Winter,et al.  Tight Uniform Continuity Bounds for Quantum Entropies: Conditional Entropy, Relative Entropy Distance and Energy Constraints , 2015, ArXiv.

[31]  W. Stinespring Positive functions on *-algebras , 1955 .

[32]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[33]  H. Vincent Poor,et al.  Finite-blocklength bounds for wiretap channels , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[34]  A. Holevo The entropy gain of infinite-dimensional quantum evolutions , 2010, 1003.5765.

[35]  Graeme Smith Private classical capacity with a symmetric side channel and its application to quantum cryptography , 2007, 0705.3838.

[36]  A. Holevo On entanglement-assisted classical capacity , 2001, quant-ph/0106075.

[37]  A. S. Holevo,et al.  Entanglement-assisted capacity of constrained channels , 2002, Quantum Informatics.

[38]  A. Serafini Quantum Continuous Variables: A Primer of Theoretical Methods , 2017 .

[39]  Максим Евгеньевич Широков,et al.  Меры корреляций в бесконечномерных квантовых системах@@@Measures of quantum correlations in infinite-dimensional systems , 2016 .

[40]  G. Lindblad Entropy, information and quantum measurements , 1973 .

[41]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[42]  Maksim E. Shirokov,et al.  Uniform continuity bounds for information characteristics of quantum channels depending on input dimension and on input energy , 2016, Journal of Physics A: Mathematical and Theoretical.

[43]  A. Holevo,et al.  A Solution of Gaussian Optimizer Conjecture for Quantum Channels , 2015 .

[44]  Alexander Semenovich Holevo,et al.  Quantum Systems, Channels, Information: A Mathematical Introduction , 2019 .

[45]  Saikat Guha,et al.  Information trade-offs for optical quantum communication , 2012, Physical review letters.

[46]  M. Shirokov Squashed entanglement in infinite dimensions , 2015, 1507.08964.

[47]  Alexander S. Holevo,et al.  Mutual and coherent information for infinite-dimensional quantum channels , 2010, Probl. Inf. Transm..

[48]  Michal Horodecki,et al.  General Paradigm for Distilling Classical Key From Quantum States , 2009, IEEE Transactions on Information Theory.

[49]  Vincent Y. F. Tan,et al.  Achievable second-order coding rates for the wiretap channel , 2012, 2012 IEEE International Conference on Communication Systems (ICCS).

[50]  Krishna Kumar Sabapathy,et al.  Non-Gaussian operations on bosonic modes of light: Photon-added Gaussian channels , 2016, 1604.07859.

[51]  Mark M. Wilde,et al.  From Classical to Quantum Shannon Theory , 2011, ArXiv.

[52]  Masahide Sasaki,et al.  Reliability and Secrecy Functions of the Wiretap Channel Under Cost Constraint , 2013, IEEE Transactions on Information Theory.

[53]  Alexander S. Holevo,et al.  One-mode quantum Gaussian channels: Structure and quantum capacity , 2007, Probl. Inf. Transm..

[54]  G. Lindblad Completely positive maps and entropy inequalities , 1975 .

[55]  Debbie W. Leung,et al.  Quantum Key Distribution Based on Private States: Unconditional Security Over Untrusted Channels With Zero Quantum Capacity , 2006, IEEE Transactions on Information Theory.

[56]  S. Lloyd,et al.  Multimode quantum entropy power inequality , 2014, 1408.6410.

[57]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[58]  Jeroen van de Graaf,et al.  Cryptographic Distinguishability Measures for Quantum-Mechanical States , 1997, IEEE Trans. Inf. Theory.

[59]  A. Holevo,et al.  One-mode bosonic Gaussian channels: a full weak-degradability classification , 2006, quant-ph/0609013.

[60]  E. Størmer,et al.  Free states of the canonical anticommutation relations , 1970 .

[61]  Saikat Guha,et al.  Classical capacity of the free-space quantum-optical channel , 2004 .

[62]  A. Holevo,et al.  Ultimate classical communication rates of quantum optical channels , 2014, Nature Photonics.

[63]  Matthieu R. Bloch,et al.  Second order asymptotics for degraded wiretap channels: How good are existing codes? , 2016, 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[64]  K Horodecki,et al.  Unconditional privacy over channels which cannot convey quantum information. , 2008, Physical review letters.

[65]  Abbas El Gamal,et al.  Network Information Theory , 2021, 2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT).

[66]  H. Falk Inequalities of J. W. Gibbs , 1970 .

[67]  Elliott H. Lieb,et al.  Entropy inequalities , 1970 .

[68]  Masahito Hayashi,et al.  Tight Exponential Analysis of Universally Composable Privacy Amplification and Its Applications , 2010, IEEE Transactions on Information Theory.

[69]  John Watrous,et al.  The Theory of Quantum Information , 2018 .

[70]  T. Heinosaari,et al.  The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement , 2012 .

[71]  L. Banchi,et al.  Fundamental limits of repeaterless quantum communications , 2015, Nature Communications.

[72]  J. Oppenheim,et al.  Secure key from bound entanglement. , 2003, Physical Review Letters.

[73]  A. Wehrl Three theorems about entropy and convergence of density matrices , 1976 .

[74]  Александр Семенович Холево,et al.  Непрерывные ансамбли и пропускная способность квантовых каналов бесконечной размерности@@@Continuous ensembles and the capacity of infinite-dimensional quantum channels , 2005 .

[75]  Mario Berta,et al.  Quantum coding with finite resources , 2015, Nature Communications.

[76]  R. Klesse Approximate quantum error correction, random codes, and quantum channel capacity , 2007, quant-ph/0701102.

[77]  A. Holevo,et al.  On the entanglement-assisted classical capacity of infinite-dimensional quantum channels , 2012, 1210.6926.

[78]  Mill Johannes G.A. Van,et al.  Transmission Of Information , 1961 .

[79]  Mario Berta,et al.  Converse Bounds for Private Communication Over Quantum Channels , 2016, IEEE Transactions on Information Theory.

[80]  K. Audenaert,et al.  Continuity bounds on the quantum relative entropy , 2005, quant-ph/0503218.

[81]  A. A. Kuznetsova Conditional Entropy for Infinite-Dimensional Quantum Systems , 2010, 1004.4519.

[82]  J. Cirac,et al.  Extremality of Gaussian quantum states. , 2005, Physical review letters.

[83]  A. Holevo,et al.  Quantum channels and their entropic characteristics , 2012, Reports on progress in physics. Physical Society.

[84]  V. Baccetti,et al.  Infinite Shannon entropy , 2012, 1212.5630.

[85]  Mark M. Wilde,et al.  Strong converse for the classical capacity of all phase-insensitive bosonic Gaussian channels , 2014, ArXiv.

[86]  Maris Ozols,et al.  Entropy power inequalities for qudits , 2015, ArXiv.

[87]  M. Fannes,et al.  Continuity of quantum conditional information , 2003, quant-ph/0312081.

[88]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[89]  Masahito Hayashi,et al.  Quantum Wiretap Channel With Non-Uniform Random Number and Its Exponent and Equivocation Rate of Leaked Information , 2012, IEEE Transactions on Information Theory.

[90]  P. Shor,et al.  The Capacity of a Quantum Channel for Simultaneous Transmission of Classical and Quantum Information , 2003, quant-ph/0311131.

[91]  Igor Devetak,et al.  Capacity theorems for quantum multiple-access channels: classical-quantum and quantum-quantum capacity regions , 2008, IEEE Transactions on Information Theory.

[92]  Saikat Guha,et al.  Quantum trade-off coding for bosonic communication , 2011, ArXiv.

[93]  P. Shor,et al.  Broadband channel capacities , 2003, quant-ph/0307098.

[94]  A. Holevo Bounds for the quantity of information transmitted by a quantum communication channel , 1973 .

[95]  Seth Lloyd,et al.  Gaussian hypothesis testing and quantum illumination , 2016, Physical review letters.

[96]  Александр Семенович Холево,et al.  Классические пропускные способности квантового канала с ограничением на входе@@@Entanglement-assisted capacities of constrained quantum channels , 2003 .

[97]  G. Giedke,et al.  Degradability of Fermionic Gaussian Channels. , 2016, Physical review letters.

[98]  M. E. Shirokov,et al.  Reversibility conditions for quantum channels and their applications , 2012, 1203.0262.

[99]  Rochus Klesse,et al.  A Random Coding Based Proof for the Quantum Coding Theorem , 2007, Open Syst. Inf. Dyn..

[100]  M. Shirokov Measures of correlations in infinite-dimensional quantum systems , 2015, 1506.06377.

[101]  J. Williamson On the Algebraic Problem Concerning the Normal Forms of Linear Dynamical Systems , 1936 .

[102]  R. Werner,et al.  Evaluating capacities of bosonic Gaussian channels , 1999, quant-ph/9912067.