Energy-Constrained Private and Quantum Capacities of Quantum Channels
暂无分享,去创建一个
Mark M. Wilde | Haoyu Qi | M. Wilde | H. Qi
[1] Howard Barnum,et al. On quantum fidelities and channel capacities , 2000, IEEE Trans. Inf. Theory.
[2] S. Lloyd,et al. Classical capacity of the lossy bosonic channel: the exact solution. , 2003, Physical review letters.
[3] M. Wolf,et al. Quantum capacities of bosonic channels. , 2006, Physical review letters.
[4] Yuen,et al. Ultimate information carrying limit of quantum systems. , 1993, Physical review letters.
[5] G. Wornell,et al. Private-Capacity Bounds for Bosonic Wiretap Channels , 2012, 1202.1126.
[6] Saikat Guha,et al. Capacity of the bosonic wiretap channel and the Entropy Photon-Number Inequality , 2008, 2008 IEEE International Symposium on Information Theory.
[7] Alexander S. Holevo,et al. On classical capacities of infinite-dimensional quantum channels , 2013, Probl. Inf. Transm..
[8] Alexander Semenovich Holevo,et al. Continuous Ensembles and the Capacity of Infinite-Dimensional Quantum Channels , 2006 .
[9] Ujjwal Sen,et al. Capacities of quantum channels for massive bosons and fermions. , 2005, Physical review letters.
[10] A. Holevo. Entanglement-Assisted Capacities of Constrained Quantum Channels , 2004 .
[11] V. Scarani,et al. The security of practical quantum key distribution , 2008, 0802.4155.
[12] Saikat Guha,et al. Multiple-user quantum information theory for optical communication channels , 2008 .
[13] Ujjwal Sen,et al. Capacities of noiseless quantum channels for massive indistinguishable particles : Bosons versus fermions , 2007 .
[14] P. Knight,et al. Introductory quantum optics , 2004 .
[15] Masahide Sasaki,et al. Error and Secrecy Exponents for Wiretap Channels under Two-Fold Cost Constraints , 2016, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..
[16] V. Giovannetti,et al. Degradability of bosonic Gaussian channels , 2006, quant-ph/0603257.
[17] Gerd Leuchs,et al. Quantum information with continuous variables of atoms and light , 2007 .
[18] T. Tao. Topics in Random Matrix Theory , 2012 .
[19] Ignacio Cirac,et al. Quantum Information with Fermionic Gaussian States , 2013 .
[20] Mark M. Wilde,et al. Capacities of Quantum Amplifier Channels , 2016, ArXiv.
[21] A. Winter,et al. Quantum privacy and quantum wiretap channels , 2004 .
[22] Sergey Bravyi. Classical capacity of fermionic product channels , 2005 .
[23] Peter W. Shor,et al. Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.
[24] S. Lloyd. Capacity of the noisy quantum channel , 1996, quant-ph/9604015.
[25] Michael D. Westmoreland,et al. Quantum Privacy and Quantum Coherence , 1997, quant-ph/9709058.
[26] J. Eisert,et al. Multi-mode bosonic Gaussian channels , 2008, 0804.0511.
[27] Alexander S. Holevo,et al. On approximation of infinite-dimensional quantum channels , 2008, Probl. Inf. Transm..
[28] Gerardo Adesso,et al. Continuous Variable Quantum Information: Gaussian States and Beyond , 2014, Open Syst. Inf. Dyn..
[29] R. Werner,et al. Tema con variazioni: quantum channel capacity , 2003, quant-ph/0311037.
[30] Andreas J. Winter,et al. Tight Uniform Continuity Bounds for Quantum Entropies: Conditional Entropy, Relative Entropy Distance and Energy Constraints , 2015, ArXiv.
[31] W. Stinespring. Positive functions on *-algebras , 1955 .
[32] A. D. Wyner,et al. The wire-tap channel , 1975, The Bell System Technical Journal.
[33] H. Vincent Poor,et al. Finite-blocklength bounds for wiretap channels , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).
[34] A. Holevo. The entropy gain of infinite-dimensional quantum evolutions , 2010, 1003.5765.
[35] Graeme Smith. Private classical capacity with a symmetric side channel and its application to quantum cryptography , 2007, 0705.3838.
[36] A. Holevo. On entanglement-assisted classical capacity , 2001, quant-ph/0106075.
[37] A. S. Holevo,et al. Entanglement-assisted capacity of constrained channels , 2002, Quantum Informatics.
[38] A. Serafini. Quantum Continuous Variables: A Primer of Theoretical Methods , 2017 .
[39] Максим Евгеньевич Широков,et al. Меры корреляций в бесконечномерных квантовых системах@@@Measures of quantum correlations in infinite-dimensional systems , 2016 .
[40] G. Lindblad. Entropy, information and quantum measurements , 1973 .
[41] A. Uhlmann. The "transition probability" in the state space of a ∗-algebra , 1976 .
[42] Maksim E. Shirokov,et al. Uniform continuity bounds for information characteristics of quantum channels depending on input dimension and on input energy , 2016, Journal of Physics A: Mathematical and Theoretical.
[43] A. Holevo,et al. A Solution of Gaussian Optimizer Conjecture for Quantum Channels , 2015 .
[44] Alexander Semenovich Holevo,et al. Quantum Systems, Channels, Information: A Mathematical Introduction , 2019 .
[45] Saikat Guha,et al. Information trade-offs for optical quantum communication , 2012, Physical review letters.
[46] M. Shirokov. Squashed entanglement in infinite dimensions , 2015, 1507.08964.
[47] Alexander S. Holevo,et al. Mutual and coherent information for infinite-dimensional quantum channels , 2010, Probl. Inf. Transm..
[48] Michal Horodecki,et al. General Paradigm for Distilling Classical Key From Quantum States , 2009, IEEE Transactions on Information Theory.
[49] Vincent Y. F. Tan,et al. Achievable second-order coding rates for the wiretap channel , 2012, 2012 IEEE International Conference on Communication Systems (ICCS).
[50] Krishna Kumar Sabapathy,et al. Non-Gaussian operations on bosonic modes of light: Photon-added Gaussian channels , 2016, 1604.07859.
[51] Mark M. Wilde,et al. From Classical to Quantum Shannon Theory , 2011, ArXiv.
[52] Masahide Sasaki,et al. Reliability and Secrecy Functions of the Wiretap Channel Under Cost Constraint , 2013, IEEE Transactions on Information Theory.
[53] Alexander S. Holevo,et al. One-mode quantum Gaussian channels: Structure and quantum capacity , 2007, Probl. Inf. Transm..
[54] G. Lindblad. Completely positive maps and entropy inequalities , 1975 .
[55] Debbie W. Leung,et al. Quantum Key Distribution Based on Private States: Unconditional Security Over Untrusted Channels With Zero Quantum Capacity , 2006, IEEE Transactions on Information Theory.
[56] S. Lloyd,et al. Multimode quantum entropy power inequality , 2014, 1408.6410.
[57] Seth Lloyd,et al. Gaussian quantum information , 2011, 1110.3234.
[58] Jeroen van de Graaf,et al. Cryptographic Distinguishability Measures for Quantum-Mechanical States , 1997, IEEE Trans. Inf. Theory.
[59] A. Holevo,et al. One-mode bosonic Gaussian channels: a full weak-degradability classification , 2006, quant-ph/0609013.
[60] E. Størmer,et al. Free states of the canonical anticommutation relations , 1970 .
[61] Saikat Guha,et al. Classical capacity of the free-space quantum-optical channel , 2004 .
[62] A. Holevo,et al. Ultimate classical communication rates of quantum optical channels , 2014, Nature Photonics.
[63] Matthieu R. Bloch,et al. Second order asymptotics for degraded wiretap channels: How good are existing codes? , 2016, 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton).
[64] K Horodecki,et al. Unconditional privacy over channels which cannot convey quantum information. , 2008, Physical review letters.
[65] Abbas El Gamal,et al. Network Information Theory , 2021, 2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT).
[66] H. Falk. Inequalities of J. W. Gibbs , 1970 .
[67] Elliott H. Lieb,et al. Entropy inequalities , 1970 .
[68] Masahito Hayashi,et al. Tight Exponential Analysis of Universally Composable Privacy Amplification and Its Applications , 2010, IEEE Transactions on Information Theory.
[69] John Watrous,et al. The Theory of Quantum Information , 2018 .
[70] T. Heinosaari,et al. The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement , 2012 .
[71] L. Banchi,et al. Fundamental limits of repeaterless quantum communications , 2015, Nature Communications.
[72] J. Oppenheim,et al. Secure key from bound entanglement. , 2003, Physical Review Letters.
[73] A. Wehrl. Three theorems about entropy and convergence of density matrices , 1976 .
[74] Александр Семенович Холево,et al. Непрерывные ансамбли и пропускная способность квантовых каналов бесконечной размерности@@@Continuous ensembles and the capacity of infinite-dimensional quantum channels , 2005 .
[75] Mario Berta,et al. Quantum coding with finite resources , 2015, Nature Communications.
[76] R. Klesse. Approximate quantum error correction, random codes, and quantum channel capacity , 2007, quant-ph/0701102.
[77] A. Holevo,et al. On the entanglement-assisted classical capacity of infinite-dimensional quantum channels , 2012, 1210.6926.
[78] Mill Johannes G.A. Van,et al. Transmission Of Information , 1961 .
[79] Mario Berta,et al. Converse Bounds for Private Communication Over Quantum Channels , 2016, IEEE Transactions on Information Theory.
[80] K. Audenaert,et al. Continuity bounds on the quantum relative entropy , 2005, quant-ph/0503218.
[81] A. A. Kuznetsova. Conditional Entropy for Infinite-Dimensional Quantum Systems , 2010, 1004.4519.
[82] J. Cirac,et al. Extremality of Gaussian quantum states. , 2005, Physical review letters.
[83] A. Holevo,et al. Quantum channels and their entropic characteristics , 2012, Reports on progress in physics. Physical Society.
[84] V. Baccetti,et al. Infinite Shannon entropy , 2012, 1212.5630.
[85] Mark M. Wilde,et al. Strong converse for the classical capacity of all phase-insensitive bosonic Gaussian channels , 2014, ArXiv.
[86] Maris Ozols,et al. Entropy power inequalities for qudits , 2015, ArXiv.
[87] M. Fannes,et al. Continuity of quantum conditional information , 2003, quant-ph/0312081.
[88] Igor Devetak. The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.
[89] Masahito Hayashi,et al. Quantum Wiretap Channel With Non-Uniform Random Number and Its Exponent and Equivocation Rate of Leaked Information , 2012, IEEE Transactions on Information Theory.
[90] P. Shor,et al. The Capacity of a Quantum Channel for Simultaneous Transmission of Classical and Quantum Information , 2003, quant-ph/0311131.
[91] Igor Devetak,et al. Capacity theorems for quantum multiple-access channels: classical-quantum and quantum-quantum capacity regions , 2008, IEEE Transactions on Information Theory.
[92] Saikat Guha,et al. Quantum trade-off coding for bosonic communication , 2011, ArXiv.
[93] P. Shor,et al. Broadband channel capacities , 2003, quant-ph/0307098.
[94] A. Holevo. Bounds for the quantity of information transmitted by a quantum communication channel , 1973 .
[95] Seth Lloyd,et al. Gaussian hypothesis testing and quantum illumination , 2016, Physical review letters.
[96] Александр Семенович Холево,et al. Классические пропускные способности квантового канала с ограничением на входе@@@Entanglement-assisted capacities of constrained quantum channels , 2003 .
[97] G. Giedke,et al. Degradability of Fermionic Gaussian Channels. , 2016, Physical review letters.
[98] M. E. Shirokov,et al. Reversibility conditions for quantum channels and their applications , 2012, 1203.0262.
[99] Rochus Klesse,et al. A Random Coding Based Proof for the Quantum Coding Theorem , 2007, Open Syst. Inf. Dyn..
[100] M. Shirokov. Measures of correlations in infinite-dimensional quantum systems , 2015, 1506.06377.
[101] J. Williamson. On the Algebraic Problem Concerning the Normal Forms of Linear Dynamical Systems , 1936 .
[102] R. Werner,et al. Evaluating capacities of bosonic Gaussian channels , 1999, quant-ph/9912067.