CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis.

CBF/DREB1 (C-repeat-binding factor/dehydration responsive element-binding factor 1) genes encode a small family of transcriptional activators that have been described as playing an important role in freezing tolerance and cold acclimation in Arabidopsis. To specify this role, we used a reverse genetic approach and identified a mutant, cbf2, in which the CBF2/DREB1C gene was disrupted. Here, we show that cbf2 plants have higher capacity to tolerate freezing than WT ones before and after cold acclimation and are more tolerant to dehydration and salt stress. All these phenotypes correlate with a stronger and more sustained expression of CBF/DREB1-regulated genes, which results from an increased expression of CBF1/DREB1B and CBF3/DREB1A in the mutant. In addition, we show that the expression of CBF1/DREB1B and CBF3/DREB1A in response to low temperature precedes that of CBF2/DREB1C. These results indicate that CBF2/DREB1C negatively regulates CBF1/DREB1B and CBF3/DREB1A, ensuring that their expression is transient and tightly controlled, which, in turn, guarantees the proper induction of downstream genes and the accurate development of Arabidopsis tolerance to freezing and related stresses.

[1]  Piero Carninci,et al.  Monitoring the Expression Pattern of 1300 Arabidopsis Genes under Drought and Cold Stresses by Using a Full-Length cDNA Microarray , 2001, Plant Cell.

[2]  Hur-Song Chang,et al.  Expression Profile Matrix of Arabidopsis Transcription Factor Genes Suggests Their Putative Functions in Response to Environmental Stresses , 2002, The Plant Cell Online.

[3]  S. J. Gilmour,et al.  Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[4]  R. Catalá,et al.  Developmental and stress regulation of RCI2A and RCI2B, two cold-inducible genes of arabidopsis encoding highly conserved hydrophobic proteins. , 2001, Plant physiology.

[5]  P. Kramer,et al.  Responses of Plants to Environmental Stresses , 1973 .

[6]  M. Thomashow,et al.  Arabidopsis Transcriptome Profiling Indicates That Multiple Regulatory Pathways Are Activated during Cold Acclimation in Addition to the CBF Cold Response Pathway Online version contains Web-only data. Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1 , 2002, The Plant Cell Online.

[7]  S. J. Gilmour,et al.  Purification and Properties of Arabidopsis thaliana COR (Cold-Regulated) Gene Polypeptides COR15am and COR6.6 Expressed in Escherichia coli , 1996, Plant physiology.

[8]  A. Jagendorf,et al.  RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[9]  G. Sessa,et al.  A cDNA encoding Arabidopsis thaliana cytoplasmic ribosomal protein L18. , 1995, Gene.

[10]  M. Ishitani,et al.  An Arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Kazuo Shinozaki,et al.  Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor , 1999, Nature Biotechnology.

[12]  E. Stockinger,et al.  Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Jian-Kang Zhu,et al.  ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. , 2003, Genes & development.

[14]  E. Meyerowitz,et al.  The AP2/EREBP family of plant transcription factors. , 1998, Biological chemistry.

[15]  J. A. Jarillo,et al.  Two Homologous Low-Temperature-Inducible Genes from Arabidopsis Encode Highly Hydrophobic Proteins , 1997, Plant physiology.

[16]  S. J. Gilmour,et al.  Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. , 2000, Plant physiology.

[17]  K. Shinozaki,et al.  A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. , 1994, The Plant cell.

[18]  K. Shinozaki,et al.  Two Transcription Factors, DREB1 and DREB2, with an EREBP/AP2 DNA Binding Domain Separate Two Cellular Signal Transduction Pathways in Drought- and Low-Temperature-Responsive Gene Expression, Respectively, in Arabidopsis , 1998, Plant Cell.

[19]  O. Schabenberger,et al.  Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. , 1998, Science.

[20]  M. Ishitani,et al.  The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo--cytoplasmic partitioning. , 2001, Genes & development.

[21]  Julio Salinas,et al.  Two related low-temperature-inducible genes of Arabidopsis encode proteins showing high homology to 14-3-3 proteins, a family of putative kinase regulators , 1994, Plant Molecular Biology.

[22]  M. Ohta,et al.  LOS2, a genetic locus required for cold‐responsive gene transcription encodes a bi‐functional enolase , 2002, The EMBO journal.

[23]  F. Skoog,et al.  A revised medium for rapid growth and bio assays with tobacco tissue cultures , 1962 .

[24]  J. Terol,et al.  The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression Is regulated by low temperature but not by abscisic acid or dehydration. , 1999, Plant physiology.

[25]  M. Thomashow,et al.  The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression , 1994, Plant Molecular Biology.

[26]  C. Somerville,et al.  Sulfonylurea-resistant mutants of Arabidopsis thaliana , 1986, Molecular and General Genetics MGG.

[27]  Michael F. Thomashow,et al.  PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms. , 1999, Annual review of plant physiology and plant molecular biology.

[28]  M. Thomashow So what's new in the field of plant cold acclimation? Lots! , 2001, Plant physiology.

[29]  E. Stockinger,et al.  Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. , 1998, The Plant journal : for cell and molecular biology.

[30]  S. J. Gilmour,et al.  cDNA sequence analysis and expression of two cold-regulated genes ofArabidopsis thaliana , 2004, Plant Molecular Biology.