Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium

[1]  S. J. Flynn,et al.  Characterization of Two Tetrachloroethene-Reducing, Acetate-Oxidizing Anaerobic Bacteria and Their Description as Desulfuromonas michiganensis sp. nov , 2003, Applied and Environmental Microbiology.

[2]  F. Löffler,et al.  Bioreactive Barriers: A Comparison of Bioaugmentation and Biostimulation for Chlorinated Solvent Remediation , 2003 .

[3]  K. M. Ritalahti,et al.  Complete Detoxification of Vinyl Chloride by an Anaerobic Enrichment Culture and Identification of the Reductively Dechlorinating Population as a Dehalococcoides Species , 2003, Applied and Environmental Microbiology.

[4]  Alison M. Cupples,et al.  Growth of a Dehalococcoides-Like Microorganism on Vinyl Chloride and cis-Dichloroethene as Electron Acceptors as Determined by Competitive PCR , 2003, Applied and Environmental Microbiology.

[5]  A. Kraus,et al.  Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium , 2003, Nature.

[6]  M. Häggblom,et al.  Dehalogenation : microbial processes and environmental applications , 2003 .

[7]  D. Beerling,et al.  A process‐based model of conifer forest structure and function with special emphasis on leaf lifespan , 2002 .

[8]  J. Gossett,et al.  Phylogenetic and Kinetic Diversity of Aerobic Vinyl Chloride-Assimilating Bacteria from Contaminated Sites , 2002, Applied and Environmental Microbiology.

[9]  E. Edwards,et al.  Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride. , 2002, Water research.

[10]  F. Löffler,et al.  Acetate versus hydrogen as direct electron donors to stimulate the microbial reductive dechlorination process at chloroethene-contaminated sites. , 2002, Environmental science & technology.

[11]  J. Gossett,et al.  Biodegradation of cis-Dichloroethene as the Sole Carbon Source by a β-Proteobacterium , 2002, Applied and Environmental Microbiology.

[12]  A. Dutton,et al.  Stable isotope and minor element proxies for Eocene climate of Seymour Island, Antarctica , 2002 .

[13]  F. Keppler,et al.  Natural formation of vinyl chloride in the terrestrial environment. , 2002, Environmental science & technology.

[14]  D. Beerling,et al.  Physiological ecology of Mesozoic polar forests in a high CO2 environment. , 2002, Annals of botany.

[15]  D. E. Ellis,et al.  Molecular Analysis of Dehalococcoides 16S Ribosomal DNA from Chloroethene-Contaminated Sites throughout North America and Europe , 2002, Applied and Environmental Microbiology.

[16]  T. Givnish Adaptive significance of evergreen vs. deciduous leaves : solving the triple paradox , 2002 .

[17]  J. Zachos,et al.  Late Paleocene Arctic coastal climate inferred from molluscan stable and radiogenic isotope ratios , 2001 .

[18]  Mark G. Tjoelker,et al.  Modelling respiration of vegetation: evidence for a general temperature‐dependent Q10 , 2001 .

[19]  D. Cantrill,et al.  Leaf phenology of some mid-Cretaceous polar forests, Alexander Island, Antarctica , 2001, Geological Magazine.

[20]  U. Szewzyk,et al.  Bacterial dehalorespiration with chlorinated benzenes , 2000, Nature.

[21]  H. Falcon-Lang The relationship between leaf longevity and growth ring markedness in modern conifer woods and its implications for palaeoclimatic studies , 2000 .

[22]  I. Mangelsdorf,et al.  Vinyl chloride: still a cause for concern. , 2000, Environmental health perspectives.

[23]  James M. Tiedje,et al.  16S rRNA Gene-Based Detection of Tetrachloroethene-Dechlorinating Desulfuromonas andDehalococcoides Species , 2000, Applied and Environmental Microbiology.

[24]  F. Löffler,et al.  16S rRNA Gene-Based Detection of Tetrachloroethene-Dechlorinating Desulfuromonas and Dehalococcoides Species , 2000 .

[25]  R. Sanford,et al.  Fraction of Electrons Consumed in Electron Acceptor Reduction and Hydrogen Thresholds as Indicators of Halorespiratory Physiology , 1999, Applied and Environmental Microbiology.

[26]  Cottrell,et al.  Evidence for extreme climatic warmth from late cretaceous arctic vertebrates , 1998, Science.

[27]  Christof Holliger,et al.  Reductive dechlorination in the energy metabolism of anaerobic bacteria , 1998 .

[28]  R. Spicer,et al.  Paleoclimatic significance of Mid-Cretaceous floras from the middle Clarence Valley, New Zealand , 1998 .

[29]  F. Woodward,et al.  The influence of Carboniferous palaeoatmospheres on plant function: an experimental and modelling assessment , 1998 .

[30]  K. M. Ritalahti,et al.  Dechlorination of chloroethenes is inhibited by 2-bromoethanesulfonate in the absence of methanogens , 1997, Applied and environmental microbiology.

[31]  J. Gossett,et al.  Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. , 1997, Science.

[32]  A. L. Roberts,et al.  Reductive Elimination of Chlorinated Ethylenes by Zero-Valent Metals , 1996 .

[33]  Robert J. Scholes,et al.  Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide , 1993 .

[34]  J. Tiedje,et al.  Microbial reductive dehalogenation. , 1992, Microbiological reviews.

[35]  G. Upchurch,et al.  Latest Cretaceous and earliest Tertiary dispersed plant cuticles from Seymour Island , 1989 .

[36]  P L McCarty,et al.  ES Critical Reviews: Transformations of halogenated aliphatic compounds. , 1987, Environmental science & technology.

[37]  J. A. Wolfe Late Cretaceous-Cenozoic history of deciduousness and the terminal Cretaceous event , 1987, Paleobiology.

[38]  W. G. Chaloner,et al.  Three growth in the Mesozoic and Early Tertiary and the reconstruction of palaeoclimates , 1985 .

[39]  P. Gerhardt Manual of methods for general bacteriology. , 1981 .

[40]  J. Hutchison,et al.  Eocene lower vertebrates from Ellesmere Island, Canadian Arctic Archipelago , 1980 .

[41]  D. I. Axelrod ORIGIN OF DECIDUOUS AND EVERGREEN HABITS IN TEMPERATE FORESTS , 1966, Evolution; international journal of organic evolution.

[42]  R. W. Chaney Tertiary Centers and Migration Routes , 1947 .