Magellan/M2FS and MMT/Hectochelle Spectroscopy of Dwarf Galaxies and Faint Star Clusters within the Galactic Halo

We present spectroscopic data for 16,369 stellar targets within and/or toward 38 dwarf spheroidal galaxies and faint star clusters within the Milky Way halo environment. All spectra come from observations with the multiobject, fiber-fed echelle spectrographs M2FS at the Magellan/Clay telescope or Hectochelle at the MMT, reaching a typical limiting magnitude G ≲ 21. Data products include processed spectra from all observations and catalogs listing estimates—derived from template model fitting—of line-of-sight velocity (median uncertainty 1.4 km s−1) effective temperature (255 K), (base-10 logarithm of) surface gravity (0.59 dex in cgs units), [Fe/H] (0.4 dex) and [Mg/Fe] (0.27 dex) abundance ratios. The sample contains multiepoch measurements for 3720 sources, with up to 15 epochs per source, enabling studies of intrinsic spectroscopic variability. The sample contains 6087 likely red giant stars (based on surface gravity), and 4492 likely members (based on line-of-sight velocity and Gaia-measured proper motion) of the target systems. The number of member stars per individual target system ranges from a few, for the faintest systems, to ∼850 for the most luminous. For most systems, our new samples extend over wider fields than have previously been observed; of the likely members in our samples, 820 lie beyond 2 times the projected half-light radius of their host system, and 42 lie beyond 5 R half.

[1]  A. McConnachie,et al.  Stars on the edge: Galactic tides and the outskirts of the Sculptor dwarf spheroidal , 2023, Monthly Notices of the Royal Astronomical Society.

[2]  A. Helmi,et al.  A 3D view of dwarf galaxies with Gaia and VLT/FLAMES. I. The Sculptor dwarf spheroidal , 2023, Astronomy & Astrophysics.

[3]  Sergey E. Koposov,et al.  The Spectroscopic Data Processing Pipeline for the Dark Energy Spectroscopic Instrument , 2022, The Astronomical Journal.

[4]  A. McConnachie,et al.  The Cosmic Hunt for Members in the Outskirts of Ultra Faint Dwarf Galaxies: Ursa Major I, Coma Berenices, and Boötes I , 2022, Monthly Notices of the Royal Astronomical Society.

[5]  V. Belokurov,et al.  Chemical and stellar properties of early-type dwarf galaxies around the Milky Way , 2022, Nature Astronomy.

[6]  Miguel de Val-Borro,et al.  The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package , 2022, The Astrophysical Journal.

[7]  P. J. Richards,et al.  Gaia Data Release 3. Summary of the content and survey properties , 2022, Astronomy & Astrophysics.

[8]  G. Battaglia,et al.  Stellar dynamics and dark matter in Local Group dwarf galaxies , 2022, Nature Astronomy.

[9]  Ting S. Li,et al.  Proper Motions, Orbits, and Tidal Influences of Milky Way Dwarf Spheroidal Galaxies , 2022, The Astrophysical Journal.

[10]  Pablo Vera Alfaro,et al.  THE SEVENTEENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEYS: COMPLETE RELEASE OF MANGA, MASTAR AND APOGEE-2 DATA , 2022 .

[11]  Sergey E. Koposov,et al.  Stellar kinematics of dwarf galaxies from multi-epoch spectroscopy: Application to Triangulum II , 2021, Monthly Notices of the Royal Astronomical Society.

[12]  Sergey E. Koposov,et al.  Spectroscopic Confirmation of the Sixth Globular Cluster in the Fornax Dwarf Spheroidal Galaxy , 2021, The Astrophysical Journal.

[13]  M. Mateo,et al.  Dynamical masses and mass-to-light ratios of resolved massive star clusters – II. Results for 26 star clusters in the Magellanic Clouds , 2021, 2104.06882.

[14]  James E. Lawler,et al.  Linemake: An Atomic and Molecular Line List Generator , 2021, Research Notes of the AAS.

[15]  A. Grazian,et al.  The Luminosity Function of Bright QSOs at z ∼ 4 and Implications for the Cosmic Ionizing Background , 2021, The Astrophysical Journal.

[16]  D. Gerdes,et al.  The Dark Energy Survey Data Release 2 , 2021, The Astrophysical Journal Supplement Series.

[17]  Caryl Emerson Tolstoy , 2020, The Oxford Handbook of Russian Religious Thought.

[18]  Benjamin D. Johnson,et al.  Evidence from the H3 Survey That the Stellar Halo Is Entirely Comprised of Substructure , 2020, The Astrophysical Journal.

[19]  A. Helmi Streams, Substructures, and the Early History of the Milky Way , 2020, Annual Review of Astronomy and Astrophysics.

[20]  M. Irwin,et al.  Homogeneity in the early chemical evolution of the Sextans dwarf spheroidal galaxy , 2020, Astronomy & Astrophysics.

[21]  A. Mackey,et al.  Dynamical masses and mass-to-light ratios of resolved massive star clusters – I. NGC 419 and NGC 1846 , 2019, Monthly Notices of the Royal Astronomical Society.

[22]  Sergey E. Koposov,et al.  The southern stellar stream spectroscopic survey (S5): Overview, target selection, data reduction, validation, and early science , 2019, Monthly Notices of the Royal Astronomical Society.

[23]  Benjamin D. Johnson,et al.  MINESweeper: Spectrophotometric Modeling of Stars in the Gaia Era , 2019, The Astrophysical Journal.

[24]  Benjamin D. Johnson,et al.  Mapping the Stellar Halo with the H3 Spectroscopic Survey , 2019, The Astrophysical Journal.

[25]  J. Simon,et al.  The Faintest Dwarf Galaxies , 2019, Annual Review of Astronomy and Astrophysics.

[26]  A. McConnachie,et al.  The Binary Fraction of Stars in Dwarf Galaxies: The Cases of Draco and Ursa Minor , 2018, The Astronomical Journal.

[27]  Anthony G. A. Brown,et al.  The merger that led to the formation of the Milky Way’s inner stellar halo and thick disk , 2018, Nature.

[28]  Ting S. Li,et al.  Proper Motions of Milky Way Ultra-faint Satellites with Gaia DR2 × DES DR1 , 2018, The Astrophysical Journal.

[29]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[30]  P. J. Richards,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[31]  A. Helmi,et al.  Gaia Data Release 2Kinematics of globular clusters and dwarfgalaxies around the Milky Way , 2018, 1804.09381.

[32]  Sergey E. Koposov,et al.  Snake in the Clouds: a new nearby dwarf galaxy in the Magellanic bridge* , 2018, Monthly Notices of the Royal Astronomical Society.

[33]  Sergey E. Koposov,et al.  Co-formation of the disc and the stellar halo , 2018, 1802.03414.

[34]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[35]  J. Lawler,et al.  Laboratory transition probabilities for studies of nucleosynthesis of Fe-group elements1 , 2017 .

[36]  A. McConnachie,et al.  The Binary Fraction of Stars in Dwarf Galaxies: The Case of Leo II , 2017, 1706.04184.

[37]  Vanessa Hill,et al.  The Pristine survey - I. Mining the Galaxy for the most metal-poor stars , 2017, 1705.01113.

[38]  M. Boylan-Kolchin,et al.  Local Group Ultra-Faint Dwarf Galaxies in the Reionization Era , 2017, 1702.06129.

[39]  Sergey E. Koposov,et al.  Crater 2: An Extremely Cold Dark Matter Halo , 2016, 1612.06398.

[40]  R. J. Wainscoat,et al.  The Pan-STARRS1 Database and Data Products , 2016, The Astrophysical Journal Supplement Series.

[41]  Jonathan Tennyson,et al.  The virtual atomic and molecular data centre (VAMDC) consortium , 2016 .

[42]  Aaron Dotter,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST) 0: METHODS FOR THE CONSTRUCTION OF STELLAR ISOCHRONES , 2016, 1601.05144.

[43]  M. Mateo,et al.  Bayesian analysis of resolved stellar spectra: application to MMT/Hectochelle observations of the Draco dwarf spheroidal , 2015, 1503.02589.

[44]  P. Bernath,et al.  CH in stellar atmospheres: an extensive linelist , 2014, 1410.4005.

[45]  R. S. Ram,et al.  LINE LISTS FOR THE A2Π–X2Σ+ (RED) AND B2Σ+–X2Σ+ (VIOLET) SYSTEMS OF CN, 13C14N, AND 12C15N, AND APPLICATION TO ASTRONOMICAL SPECTRA , 2014, 1408.3828.

[46]  R. S. Ram,et al.  IMPROVED LINE DATA FOR THE SWAN SYSTEM 12C13C ISOTOPOLOGUE , 2014 .

[47]  Adam D. Myers,et al.  The Sloan Digital Sky Survey quasar catalog: tenth data release , 2013, 1311.4870.

[48]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[49]  R. S. Ram,et al.  THE MAGNESIUM ISOTOPOLOGUES OF MgH IN THE A2Π–X2Σ+ SYSTEM , 2013 .

[50]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[51]  Vanessa Hill,et al.  The extremely low-metallicity tail of the Sculptor dwarf spheroidal galaxy , 2012, 1211.4592.

[52]  John I. Bailey,et al.  M2FS: the Michigan/Magellan Fiber System , 2012, Other Conferences.

[53]  W. M. Wood-Vasey,et al.  THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7137.

[54]  Alan W. McConnachie,et al.  THE OBSERVED PROPERTIES OF DWARF GALAXIES IN AND AROUND THE LOCAL GROUP , 2012, 1204.1562.

[55]  L. KuruczRobert Including all the lines11This article is part of a Special Issue on the 10th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas. , 2011 .

[56]  S. Shectman,et al.  THE ABUNDANCES OF NEUTRON-CAPTURE SPECIES IN THE VERY METAL-POOR GLOBULAR CLUSTER M15: A UNIFORM ANALYSIS OF RED GIANT BRANCH AND RED HORIZONTAL BRANCH STARS , 2011, 1103.1008.

[57]  S. Majewski,et al.  MULTI-ELEMENT ABUNDANCE MEASUREMENTS FROM MEDIUM-RESOLUTION SPECTRA. II. CATALOG OF STARS IN MILKY WAY DWARF SATELLITE GALAXIES , 2010, 1011.4516.

[58]  B. Willman,et al.  WILLMAN 1—A PROBABLE DWARF GALAXY WITH AN IRREGULAR KINEMATIC DISTRIBUTION , 2010, 1007.3499.

[59]  M. Irwin,et al.  The remnants of galaxy formation from a panoramic survey of the region around M31 , 2009, Nature.

[60]  E. Tolstoy,et al.  Star-Formation Histories, Abundances, and Kinematics of Dwarf Galaxies in the Local Group , 2009, 0904.4505.

[61]  A. Helmi,et al.  Chemical composition of extremely metal-poor stars in the Sextans dwarf spheroidal galaxy , 2009, 0904.4307.

[62]  Yue Wu,et al.  ULySS: a full spectrum fitting package , 2009, 0903.2979.

[63]  E. A. Den Hartog,et al.  IMPROVED LABORATORY TRANSITION PROBABILITIES FOR Ce ii, APPLICATION TO THE CERIUM ABUNDANCES OF THE SUN AND FIVE r-PROCESS-RICH, METAL-POOR STARS, AND RARE EARTH LAB DATA SUMMARY , 2009, 0903.1982.

[64]  Mario Mateo,et al.  STELLAR VELOCITIES IN THE CARINA, FORNAX, SCULPTOR, AND SEXTANS dSph GALAXIES: DATA FROM THE MAGELLAN/MMFS SURVEY , 2008, 0811.0118.

[65]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[66]  L. Pasquini,et al.  Abundances of four open clusters from solar stars , 2008, 0806.2280.

[67]  Heidelberg,et al.  A Comprehensive Maximum Likelihood Analysis of the Structural Properties of Faint Milky Way Satellites , 2008, 0805.2945.

[68]  Australian National University,et al.  THE SEGUE STELLAR PARAMETER PIPELINE. II. VALIDATION WITH GALACTIC GLOBULAR AND OPEN CLUSTERS , 2007, 0710.5778.

[69]  Mario Mateo,et al.  The Velocity Dispersion Profile of the Remote Dwarf Spheroidal Galaxy Leo I: A Tidal Hit and Run? , 2007, 0708.1327.

[70]  N. F. Martin,et al.  A Keck/DEIMOS spectroscopic survey of faint Galactic satellites: searching for the least massive dwarf galaxies , 2007, 0705.4622.

[71]  F. Feroz,et al.  Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses , 2007, 0704.3704.

[72]  R.F.G. Wyse,et al.  Stellar Kinematics in the Remote Leo II Dwarf Spheroidal Galaxy—Another Brick in the Wall , 2007, 0704.3437.

[73]  E. Grebel,et al.  The Observed Properties of Dark Matter on Small Spatial Scales , 2007, Proceedings of the International Astronomical Union.

[74]  B. Sen,et al.  The Michigan/MIKE Fiber System Survey of Stellar Radial Velocities in Dwarf Spheroidal Galaxies: Acquisition and Reduction of Data , 2007, astro-ph/0703284.

[75]  E. Grebel,et al.  Stellar Kinematics and Metallicities in the Leo I Dwarf Spheroidal Galaxy—Wide-Field Implications for Galactic Evolution , 2006, astro-ph/0611372.

[76]  A. Helmi,et al.  The DART Imaging And CaT Survey of the Fornax Dwarf Spheroidal Galaxy , 2006, astro-ph/0608370.

[77]  Jeffrey L. Carlin,et al.  Exploring Halo Substructure with Giant Stars: The Dynamics and Metallicity of the Dwarf Spheroidal in Boötes , 2006, astro-ph/0606271.

[78]  Andrew Szentgyorgyi,et al.  Hectochelle: High resolution multiobject spectroscopy at the MMT , 2006 .

[79]  E. Grebel,et al.  Complexity on Small Scales: The Metallicity Distribution of the Carina Dwarf Spheroidal Galaxy , 2005, astro-ph/0511087.

[80]  N. Evans,et al.  Ursa Major: A Missing Low-Mass CDM Halo? , 2005, astro-ph/0507154.

[81]  O. Paris,et al.  Subaru/HDS Abundances in Three Giant Stars in the Ursa Minor Dwarf Spheroidal Galaxy ∗ , 2004, astro-ph/0411332.

[82]  A. Helmi,et al.  Two distinct ancient components in the Sculptor Dwarf Spheroidal Galaxy: First Results from DART , 2004, astro-ph/0411029.

[83]  R. Michael Rich,et al.  Draco 119: A Remarkable Heavy-Element-deficient Giant , 2004, astro-ph/0409646.

[84]  N. W. Evans,et al.  Kinematically Cold Populations at Large Radii in the Draco and Ursa Minor Dwarf Spheroidal Galaxies , 2004, astro-ph/0406520.

[85]  M. Shetrone,et al.  VLT/UVES Abundances in Four Nearby Dwarf Spheroidal Galaxies. I. Nucleosynthesis and Abundance Ratios , 2002, astro-ph/0211167.

[86]  N. Evans,et al.  Dark matter in dwarf spheroidals – II. Observations and modelling of Draco , 2001, astro-ph/0109450.

[87]  M. Shetrone,et al.  Abundance Patterns in the Draco, Sextans, and Ursa Minor Dwarf Spheroidal Galaxies , 2000, astro-ph/0009505.

[88]  M. Mateo DWARF GALAXIES OF THE LOCAL GROUP , 1998, astro-ph/9810070.

[89]  William E. Harris,et al.  A Catalog of Parameters for Globular Clusters in the Milky Way , 1996 .

[90]  M. Irwin,et al.  A dynamical study of the Draco dwarf spheroidal galaxy , 1996 .

[91]  E. Olszewski,et al.  Nine Seasons of Velocity Measurements in the Draco and Ursa Minor Dwarf Spheroidal Galaxies with the MMT Echelle , 1995 .

[92]  M. Irwin,et al.  A dynamical study of the Ursa Minor dwarf spheroidal galaxy , 1994 .

[93]  M. Irwin,et al.  A dynamical study of the Sextans dwarf spheroidal galaxy , 1994 .

[94]  Philippe Fischer,et al.  The Carina dwarf spheroidal galaxy: how dark is it? , 1993 .

[95]  M. Mateo,et al.  A kinematic study of the Fornax dwarf spheroidal galaxy , 1991 .

[96]  R. Lathe Phd by thesis , 1988, Nature.

[97]  Doug Tody,et al.  The Iraf Data Reduction And Analysis System , 1986, Astronomical Telescopes and Instrumentation.

[98]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .

[99]  E. Olszewski,et al.  The Ursa Minor dwarf galaxy : still an old stellar system. , 1985 .

[100]  M. Aaronson,et al.  Accurate radial velocities for carbon stars in Draco and Ursa Minor - The first hint of a dwarf spheroidal mass-to-light ratio , 1983 .