Some useful results on initial node locations for near-equatorial circular satellite orbits

Perturbation theory based on Lie transforms is used to obtain a second-order long period solution for inclination and right ascension of ascending node, of near-equatorial circular satellite orbits. The solution includes the average effects of the Earth's oblateness and the luni-solar perturbations. Three algorithms, useful in mission analysis, are then given. The first algorithm finds the initial node location that results in a decrease of inclination to zero and it also finds the corresponding time to arrive at this zero inclination. The second algorithm determines the initial nodal band that maintains the orbital inclination below a specified value for a given time interval. The third algorithm obtains the initial node location that maximizes the time in which the satellite can be maintained within a given inclination tolerance without the use of any active control and it also obtains the corresponding maximum time. The results of the first and the third algorithms are given for 24-h near-equatorial circular satellite orbits and are cast in simple closed forms.