Neuronal distribution across the cerebral cortex of the marmoset monkey (Callithrix jacchus)

Using stereological analysis of NeuN-stained sections, we investigated neuronal density and number of neurons per column throughout the marmoset cortex. Estimates of mean neuronal density encompassed a greater than 3-fold range, from >150 000 neurons/mm3 in the primary visual cortex to ~50 000 neurons/mm3 in the piriform complex. There was a trend for density to decrease from posterior to anterior cortex, but also local gradients, which resulted in a complex pattern; for example, in frontal, auditory, and somatosensory cortex neuronal density tended to increase towards anterior areas. Anterior cingulate, motor, premotor, insular, and ventral temporal areas were characterized by relatively low neuronal densities. Analysis across the depth of the cortex revealed greater laminar variation of neuronal density in occipital, parietal, and inferior temporal areas, in comparison with other regions. Moreover, differences between areas were more pronounced in the supragranular layers than in infragranular layers. Calculations of the number of neurons per unit column revealed a pattern that was distinct from that of neuronal density, including local peaks in the posterior parietal, superior temporal, precuneate, frontopolar, and temporopolar regions. These results suggest that neuronal distribution in adult cortex result from a complex interaction of developmental/ evolutionary determinants and functional requirements.

[1]  David A. Leopold,et al.  The marmoset monkey as a model for visual neuroscience , 2015, Neuroscience Research.

[2]  Michael Petrides,et al.  The marmoset brain in stereotaxic coordinates , 2012 .

[3]  Barbara L. Finlay,et al.  Developmental mechanisms channeling cortical evolution , 2015, Trends in Neurosciences.

[4]  Leo L. Lui,et al.  Development of non‐phosphorylated neurofilament protein expression in neurones of the New World monkey dorsolateral frontal cortex , 2007, The European journal of neuroscience.

[5]  Bruno Mota,et al.  The human cerebral cortex is neither one nor many: neuronal distribution reveals two quantitatively different zones in the gray matter, three in the white matter, and explains local variations in cortical folding , 2013, Front. Neuroanat..

[6]  Pierre-Louis Bazin,et al.  Anatomically motivated modeling of cortical laminae , 2014, NeuroImage.

[7]  Tristan A. Chaplin,et al.  Representation of the visual field in the primary visual area of the marmoset monkey: Magnification factors, point‐image size, and proportionality to retinal ganglion cell density , 2013, The Journal of comparative neurology.

[8]  G. Elston,et al.  Morphological variation of layer III pyramidal neurones in the occipitotemporal pathway of the macaque monkey visual cortex. , 1998, Cerebral cortex.

[9]  Piotr Majka,et al.  Towards a comprehensive atlas of cortical connections in a primate brain: Mapping tracer injection studies of the common marmoset into a reference digital template , 2016, The Journal of comparative neurology.

[10]  Barbara L Finlay,et al.  Evolution of cytoarchitectural landscapes in the mammalian isocortex: Sirenians (Trichechus manatus) in comparison with other mammals , 2016, The Journal of comparative neurology.

[11]  Sophia Bakola,et al.  Cortical and thalamic projections to cytoarchitectural areas 6Va and 8C of the marmoset monkey: Connectionally distinct subdivisions of the lateral premotor cortex , 2015, The Journal of comparative neurology.

[12]  Roberto Lent,et al.  Isotropic Fractionator: A Simple, Rapid Method for the Quantification of Total Cell and Neuron Numbers in the Brain , 2005, The Journal of Neuroscience.

[13]  M P Young,et al.  Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[14]  David A. Leopold,et al.  Marmosets: A Neuroscientific Model of Human Social Behavior , 2016, Neuron.

[15]  K. Rockland,et al.  The pyramidal cell of the sensorimotor cortex of the macaque monkey: phenotypic variation. , 2002, Cerebral cortex.

[16]  E. Rolls,et al.  Functional subdivisions of the temporal lobe neocortex , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  Matthew W Spitzer,et al.  Anatomical and physiological definition of the motor cortex of the marmoset monkey , 2008, The Journal of comparative neurology.

[18]  Samuel G. Solomon,et al.  A simpler primate brain: the visual system of the marmoset monkey , 2014, Front. Neural Circuits..

[19]  Yoshinao Kajikawa,et al.  Cortical connections of the auditory cortex in marmoset monkeys: Core and medial belt regions , 2006, The Journal of comparative neurology.

[20]  Matthew W Spitzer,et al.  Connections of the marmoset rostrotemporal auditory area: express pathways for analysis of affective content in hearing , 2009, The European journal of neuroscience.

[21]  P. R. Hof,et al.  Design-based stereology in neuroscience , 2005, Neuroscience.

[22]  G. Elston,et al.  Visuotopic organisation and neuronal response selectivity for direction of motion in visual areas of the caudal temporal lobe of the marmoset monkey (Callithrix jacchus): Middle temporal area, middle temporal crescent, and surrounding cortex , 1998, The Journal of comparative neurology.

[23]  Jamie L. Reed,et al.  Cortical cell and neuron density estimates in one chimpanzee hemisphere , 2016, Proceedings of the National Academy of Sciences.

[24]  P. Rakic Pre- and post-developmental neurogenesis in primates , 2002, Clinical Neuroscience Research.

[25]  Marcello G P Rosa,et al.  Brain maps, great and small: lessons from comparative studies of primate visual cortical organization , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[26]  A. Angelucci,et al.  Resolving the organization of the third tier visual cortex in primates: A hypothesis-based approach , 2015, Visual Neuroscience.

[27]  Mario Fiorani,et al.  Parallel Evolution of Cortical Areas Involved in Skilled Hand Use , 2007, The Journal of Neuroscience.

[28]  M. Rosa,et al.  Visual areas in lateral and ventral extrastriate cortices of the marmoset monkey , 2000, The Journal of comparative neurology.

[29]  G. Bourne The structure and function of nervous tissue , 1968 .

[30]  Marcello G P Rosa,et al.  Quantitative analysis of the corticocortical projections to the middle temporal area in the marmoset monkey: evolutionary and functional implications. , 2006, Cerebral cortex.

[31]  Jon H. Kaas,et al.  Cell and neuron densities in the primary motor cortex of primates , 2013, Front. Neural Circuits.

[32]  Sophia Bakola,et al.  Patterns of afferent input to the caudal and rostral areas of the dorsal premotor cortex (6DC and 6DR) in the marmoset monkey , 2014, The Journal of comparative neurology.

[33]  T. Powell,et al.  The basic uniformity in structure of the neocortex. , 1980, Brain : a journal of neurology.

[34]  M. Gamberini,et al.  Resolving the organization of the New World monkey third visual complex: The dorsal extrastriate cortex of the marmoset (Callithrix jacchus) , 2005, The Journal of comparative neurology.

[35]  M. Colonnier,et al.  Effects of the richness of the environment on six different cortical areas of the cat cerebral cortex , 1989, Brain Research.

[36]  Afonso C. Silva Anatomical and functional neuroimaging in awake, behaving marmosets , 2017, Developmental neurobiology.

[37]  M. Rosa,et al.  A distinct anatomical network of cortical areas for analysis of motion in far peripheral vision , 2006, The European journal of neuroscience.

[38]  Tristan A. Chaplin,et al.  Cortical Afferents of Area 10 in Cebus Monkeys: Implications for the Evolution of the Frontal Pole , 2019, Cerebral cortex.

[39]  Michela Gamberini,et al.  Cytoarchitectonic subdivisions of the dorsolateral frontal cortex of the marmoset monkey (Callithrix jacchus), and their projections to dorsal visual areas , 2006, The Journal of comparative neurology.

[40]  M G Rosa,et al.  Visual areas in the dorsal and medial extrastriate cortices of the marmoset , 1995, The Journal of comparative neurology.

[41]  K. Amunts,et al.  Spatial organization of neurons in the frontal pole sets humans apart from great apes. , 2011, Cerebral cortex.

[42]  Fenna M. Krienen,et al.  Gradients in cytoarchitectural landscapes of the isocortex: Diprotodont marsupials in comparison to eutherian mammals , 2017, The Journal of comparative neurology.

[43]  Katrin Amunts,et al.  A comparative quantitative analysis of cytoarchitecture and minicolumnar organization in Broca's area in humans and great apes , 2008, The Journal of comparative neurology.

[44]  Kathleen J. Burman,et al.  The cortical motor system of the marmoset monkey (Callithrix jacchus) , 2015, Neuroscience Research.

[45]  E. Koechlin,et al.  Managing competing goals — a key role for the frontopolar cortex , 2017, Nature Reviews Neuroscience.

[46]  Claus C. Hilgetag,et al.  Role of Mechanical Factors in the Morphology of the Primate Cerebral Cortex , 2006, PLoS Comput. Biol..

[47]  L. Krubitzer,et al.  The evolutionary masquerade: genetic and epigenetic contributions to the neocortex , 2014, Current Opinion in Neurobiology.

[48]  H. Kennedy,et al.  A Large-Scale Circuit Mechanism for Hierarchical Dynamical Processing in the Primate Cortex , 2015, Neuron.

[49]  Paul J. Harrison,et al.  Neuronal density, size and shape in the human anterior cingulate cortex: a comparison of Nissl and NeuN staining , 2004, Brain Research Bulletin.

[50]  Charles Watson,et al.  Distribution of neurons in functional areas of the mouse cerebral cortex reveals quantitatively different cortical zones , 2013, Front. Neuroanat..

[51]  Maureen A. Hagan,et al.  Neural plasticity following lesions of the primate occipital lobe: The marmoset as an animal model for studies of blindsight , 2017, Developmental neurobiology.

[52]  Cory T. Miller,et al.  Marmoset vocal communication: Behavior and neurobiology , 2017, Developmental neurobiology.

[53]  R. J. Mullen,et al.  NeuN, a neuronal specific nuclear protein in vertebrates. , 1992, Development.

[54]  A. Angelucci,et al.  High-resolution mapping of anatomical connections in marmoset extrastriate cortex reveals a complete representation of the visual field bordering dorsal V2. , 2013, Cerebral cortex.

[55]  G. Elston,et al.  The second visual area in the marmoset monkey: Visuotopic organisation, magnification factors, architectonical boundaries, and modularity , 1997, The Journal of comparative neurology.

[56]  Roger B. H. Tootell,et al.  Modified technique for cytochrome oxidase histochemistry: increased staining intensity and compatibility with 2-deoxyglucose autoradiography , 1987, Journal of Neuroscience Methods.

[57]  J. Kaas,et al.  Subdivisions of auditory cortex and processing streams in primates. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[58]  M. Rosa,et al.  Chemoarchitecture of the middle temporal visual area in the marmoset monkey (Callithrix jacchus): Laminar distribution of calcium‐binding proteins (calbindin, parvalbumin) and nonphosphorylated neurofilament , 2007, The Journal of comparative neurology.

[59]  L A Krubitzer,et al.  The organization and connections of somatosensory cortex in marmosets , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  P. Mitra,et al.  Brain-mapping projects using the common marmoset , 2015, Neuroscience Research.

[61]  G. Elston,et al.  Cortical integration in the visual system of the macaque monkey: large-scale morphological differences in the pyramidal neurons in the occipital, parietal and temporal lobes , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[62]  Yoshiro Shiba,et al.  A dimensional approach to modeling symptoms of neuropsychiatric disorders in the marmoset monkey , 2017, Developmental neurobiology.

[63]  Allan R. Sampson,et al.  Volume and neuron number of the lateral geniculate nucleus in schizophrenia and mood disorders , 2009, Acta Neuropathologica.

[64]  Miao He,et al.  Brain-wide Maps Reveal Stereotyped Cell-Type-Based Cortical Architecture and Subcortical Sexual Dimorphism , 2017, Cell.

[65]  C C Hilgetag,et al.  Quantitative architecture distinguishes prefrontal cortical systems in the rhesus monkey. , 2001, Cerebral cortex.

[66]  K. Saleem,et al.  Complementary circuits connecting the orbital and medial prefrontal networks with the temporal, insular, and opercular cortex in the macaque monkey , 2008, The Journal of comparative neurology.

[67]  F. Gallyas Silver staining of myelin by means of physical development. , 1979, Neurological research.

[68]  Tristan A. Chaplin,et al.  Contrasting patterns of cortical input to architectural subdivisions of the area 8 complex: a retrograde tracing study in marmoset monkeys. , 2013, Cerebral cortex.

[69]  G. Elston Pyramidal Cells of the Frontal Lobe: All the More Spinous to Think With , 2000, The Journal of Neuroscience.

[70]  Sophia Bakola,et al.  Patterns of cortical input to the primary motor area in the marmoset monkey , 2014, The Journal of comparative neurology.

[71]  Lauretta Passarelli,et al.  Uniformity and Diversity of Cortical Projections to Precuneate Areas in the Macaque Monkey: What Defines Area PGm? , 2018, Cerebral cortex.

[72]  G. Elston,et al.  The occipitoparietal pathway of the macaque monkey: comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. , 1997, Cerebral cortex.

[73]  Christine E. Collins,et al.  Variability in Neuron Densities across the Cortical Sheet in Primates , 2011, Brain, Behavior and Evolution.

[74]  Jamie L. Reed,et al.  Distributions of Cells and Neurons across the Cortical Sheet in Old World Macaques , 2016, Brain, Behavior and Evolution.

[75]  Kathleen J. Burman,et al.  Architectural subdivisions of medial and orbital frontal cortices in the marmoset monkey (Callithrix jacchus) , 2009, The Journal of comparative neurology.

[76]  K. Rockland,et al.  A Survey of White Matter Neurons at the Gyral Crowns and Sulcal Depths in the Rhesus Monkey , 2017, Front. Neuroanat..

[77]  P. Rakić,et al.  Tempo of neurogenesis and synaptogenesis in the primate cingulate mesocortex: Comparison with the neocortex , 1995, The Journal of comparative neurology.

[78]  Barbara L Finlay,et al.  Systematic, cross-cortex variation in neuron numbers in rodents and primates. , 2015, Cerebral cortex.

[79]  Barbara L. Finlay,et al.  Systematic, balancing gradients in neuron density and number across the primate isocortex , 2012, Front. Neuroanat..

[80]  J. Hutsler,et al.  Comparative analysis of cortical layering and supragranular layer enlargement in rodent carnivore and primate species , 2005, Brain Research.

[81]  Atsushi Iriki,et al.  A high-throughput neurohistological pipeline for brain-wide mesoscale connectivity mapping of the common marmoset , 2018, bioRxiv.

[82]  Claus C. Hilgetag,et al.  Cytoarchitectural differences are a key determinant of laminar projection origins in the visual cortex , 2010, NeuroImage.

[83]  Atsushi Iriki,et al.  The Brain/MINDS 3D digital marmoset brain atlas , 2018, Scientific Data.

[84]  Hideyuki Okano,et al.  Investigation of brain science and neurological/psychiatric disorders using genetically modified non-human primates , 2018, Current Opinion in Neurobiology.

[85]  P. Hof,et al.  Scaling of Inhibitory Interneurons in Areas V1 and V2 of Anthropoid Primates as Revealed by Calcium-Binding Protein Immunohistochemistry , 2006, Brain, Behavior and Evolution.

[86]  Håkon Grydeland,et al.  Organizing Principles of Human Cortical Development--Thickness and Area from 4 to 30 Years: Insights from Comparative Primate Neuroanatomy. , 2016, Cerebral cortex.

[87]  Guido Gerig,et al.  User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability , 2006, NeuroImage.

[88]  Xiao-Jing Wang,et al.  A disinhibitory circuit motif and flexible information routing in the brain , 2018, Current Opinion in Neurobiology.

[89]  Douglas L. Rosene,et al.  White Matter Neurons in Young Adult and Aged Rhesus Monkey , 2016, Front. Neuroanat..

[90]  Leo L. Lui,et al.  Functional response properties of neurons in the dorsomedial visual area of New World monkeys (Callithrix jacchus). , 2006, Cerebral cortex.

[91]  G. Elston,et al.  Complex dendritic fields of pyramidal cells in the frontal eye field of the macaque monkey: comparison with parietal areas 7a and LIP , 1998, Neuroreport.

[92]  William Schroeder,et al.  The Visualization Toolkit: An Object-Oriented Approach to 3-D Graphics , 1997 .

[93]  Claus C. Hilgetag,et al.  The primate connectome in context: Principles of connections of the cortical visual system , 2016, NeuroImage.

[94]  Yundi Shi,et al.  A diffusion tensor MRI atlas of the postmortem rhesus macaque brain , 2015, NeuroImage.

[95]  D. B. Leitch,et al.  Neuron densities vary across and within cortical areas in primates , 2010, Proceedings of the National Academy of Sciences.

[96]  Marcello G P Rosa,et al.  Hierarchical development of the primate visual cortex, as revealed by neurofilament immunoreactivity: early maturation of the middle temporal area (MT). , 2006, Cerebral cortex.

[97]  Leo L. Lui,et al.  Neuronal degeneration in the dorsal lateral geniculate nucleus following lesions of primary visual cortex: comparison of young adult and geriatric marmoset monkeys , 2017, Brain Structure and Function.

[98]  C. Galletti,et al.  Connections of the Dorsomedial Visual Area: Pathways for Early Integration of Dorsal and Ventral Streams in Extrastriate Cortex , 2009, The Journal of Neuroscience.

[99]  A. Angelucci,et al.  Corticocortical connection patterns reveal two distinct visual cortical areas bordering dorsal V2 in marmoset monkey , 2015, Visual Neuroscience.

[100]  Douglas L. Rosene,et al.  Age-related effects on cortical thickness patterns of the Rhesus monkey brain , 2012, Neurobiology of Aging.

[101]  David A. Leopold,et al.  A digital 3D atlas of the marmoset brain based on multi-modal MRI , 2018, NeuroImage.

[102]  M. Schäfers,et al.  Cellular organization of adult neurogenesis in the Common Marmoset , 2011, Aging cell.

[103]  I. Aharon,et al.  Three‐dimensional mapping of cortical thickness using Laplace's Equation , 2000, Human brain mapping.

[104]  L Krubitzer,et al.  Area 3a: topographic organization and cortical connections in marmoset monkeys. , 2001, Cerebral cortex.