Dynamic gradient-diffusion subgrid models for incompressible magnetohydrodynamic turbulence

The performance of different dynamic gradient-diffusion type subgrid models is evaluated in large-eddy simulations (LES) of magnetohydrodynamic (MHD) turbulence with a maximum of 643 collocation points. The reference data stems from high-resolution direct numerical simulations of decaying and forced MHD turbulence with up to 5123 spectral modes. Comparisons between LES’ and the grid filtered reference systems are carried out regarding the temporal evolution of the global quantities kinetic and magnetic energy, cross helicity, magnetic helicity, and the spectra of energy and energy flux. The influence of the subgrid models on the statistical properties of the simulated flows is also examined. Apart from unconditionally dissipative models, direct divergence modeling and the effects of additional explicit filtering in combination with a tensor-diffusivity term are considered. A new genuine MHD subgrid model, based on the cross-helicity invariant, is presented and observed to perform outstandingly well.

[1]  M. Germano,et al.  Turbulence: the filtering approach , 1992, Journal of Fluid Mechanics.

[2]  Dieter Biskamp,et al.  Magnetic reconnection in plasmas , 2000 .

[3]  Walter M. Elsasser,et al.  The Hydromagnetic Equations , 1950 .

[4]  A. Yoshizawa Subgrid modeling for magnetohydrodynamic turbulent shear flows , 1987 .

[5]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[6]  O. Agullo,et al.  Large eddy simulation of decaying magnetohydrodynamic turbulence with dynamic subgrid-modeling , 2001 .

[7]  P. Moin,et al.  Numerical Simulation of Turbulent Flows , 1984 .

[8]  P. Sagaut Large Eddy Simulation for Incompressible Flows , 2001 .

[9]  Hervé Jeanmart,et al.  Explicit-filtering large-eddy simulation using the tensor-diffusivity model supplemented by a dynami , 2001 .

[10]  D. Carati,et al.  On the self-similarity assumption in dynamic models for large eddy simulations , 1997 .

[11]  D. Lilly,et al.  A proposed modification of the Germano subgrid‐scale closure method , 1992 .

[12]  Dieter Biskamp,et al.  Scaling properties of three-dimensional isotropic magnetohydrodynamic turbulence , 2000 .

[13]  P. Sulem,et al.  Comparative study of dissipation modeling in two-dimensional MHD turbulence , 1990 .

[14]  Marcel Lesieur,et al.  Turbulence in fluids , 1990 .

[15]  Andreas Burkert,et al.  Kinetic Energy Decay Rates of Supersonic and Super-Alfvénic Turbulence in Star-Forming Clouds , 1998 .

[16]  U. Frisch,et al.  Strong MHD helical turbulence and the nonlinear dynamo effect , 1976, Journal of Fluid Mechanics.

[17]  Hervé Jeanmart,et al.  On the modelling of the subgrid-scale and filtered-scale stress tensors in large-eddy simulation , 2001, Journal of Fluid Mechanics.

[18]  A. Leonard Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows , 1975 .

[19]  Douglas K. Lilly,et al.  A comparison of two dynamic subgrid closure methods for turbulent thermal convection , 1994 .

[20]  L. Prandtl 7. Bericht über Untersuchungen zur ausgebildeten Turbulenz , 1925 .

[21]  Sabatino Sofia,et al.  A subgrid‐scale resistivity for magnetohydrodynamics , 1994 .

[22]  D. Leslie,et al.  The application of turbulence theory to the formulation of subgrid modelling procedures , 1979, Journal of Fluid Mechanics.

[23]  D. Sokoloff,et al.  Magnetic Fields in Astrophysics , 1958 .

[24]  E. Ostriker,et al.  Dissipation in Compressible Magnetohydrodynamic Turbulence , 1998, astro-ph/9809357.

[25]  G. Vahala,et al.  Aspects of subgrid modelling and large-eddy simulation of magnetohydrodynamic turbulence , 1991, Journal of Plasma Physics.

[26]  P. Moin,et al.  A dynamic localization model for large-eddy simulation of turbulent flows , 1995, Journal of Fluid Mechanics.

[27]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .