Unshackling evolution

In 1994, Karl Sims' evolved virtual creatures showed the potential of evolutionary algorithms to produce natural, complex morphologies and behaviors [30]. One might assume that nearly 20 years of improvements in computational speed and evolutionary algorithms would produce far more impressive organisms, yet the creatures evolved in the field of artificial life today are not obviously more complex, natural, or intelligent. Fig. 2 demonstrates an example of similar complexity in robots evolved 17 years apart.

[1]  Yoji Umetani,et al.  The Development of Soft Gripper for the Versatile Robot Hand , 1978 .

[2]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[3]  Karl Sims,et al.  Evolving virtual creatures , 1994, SIGGRAPH.

[4]  Stefano Nolfi,et al.  How to Evolve Autonomous Robots: Different Approaches in Evolutionary Robotics , 1994 .

[5]  Jordan B. Pollack,et al.  Automatic design and manufacture of robotic lifeforms , 2000, Nature.

[6]  Jordan B. Pollack,et al.  Evolving L-systems to generate virtual creatures , 2001, Comput. Graph..

[7]  Maciej Komosinski,et al.  Comparison of Different Genotype Encodings for Simulated Three-Dimensional Agents , 2002, Artificial Life.

[8]  Josh Bongard,et al.  Evolving modular genetic regulatory networks , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[9]  Risto Miikkulainen,et al.  Evolving Neural Networks through Augmenting Topologies , 2002, Evolutionary Computation.

[10]  Risto Miikkulainen,et al.  A Taxonomy for Artificial Embryogeny , 2003, Artificial Life.

[11]  Jordan B. Pollack,et al.  TITLE : Generative Representations for the Automated Design of Modular Physical Robots , 2003 .

[12]  Rolf Pfeifer,et al.  How the body shapes the way we think - a new view on intelligence , 2006 .

[13]  Rolf Pfeifer,et al.  How the Body Shapes the Way We Think: A New View of Intelligence (Bradford Books) , 2006 .

[14]  Kenneth O. Stanley,et al.  Generating large-scale neural networks through discovering geometric regularities , 2007, GECCO '07.

[15]  Kenneth O. Stanley,et al.  Compositional Pattern Producing Networks : A Novel Abstraction of Development , 2007 .

[16]  Ian D. Walker,et al.  Soft robotics: Biological inspiration, state of the art, and future research , 2008 .

[17]  Jimmy Secretan,et al.  Picbreeder: evolving pictures collaboratively online , 2008, CHI.

[18]  Soha Hassoun,et al.  Evolving soft robotic locomotion in PhysX , 2009, GECCO '09.

[19]  Charles Ofria,et al.  Evolving coordinated quadruped gaits with the HyperNEAT generative encoding , 2009, 2009 IEEE Congress on Evolutionary Computation.

[20]  Kenneth O. Stanley,et al.  A Hypercube-Based Encoding for Evolving Large-Scale Neural Networks , 2009, Artificial Life.

[21]  Hod Lipson,et al.  Multi material topological optimization of structures and mechanisms , 2009, GECCO.

[22]  Joshua Evan Auerbach,et al.  Dynamic Resolution in the Co-Evolution of Morphology and Control , 2010, ALIFE.

[23]  Joshua Evan Auerbach,et al.  Evolving CPPNs to grow three-dimensional physical structures , 2010, GECCO '10.

[24]  Hod Lipson,et al.  Evolving Amorphous Robots , 2010, ALIFE.

[25]  Kenneth O. Stanley,et al.  Evolving a diversity of virtual creatures through novelty search and local competition , 2011, GECCO '11.

[26]  Kenneth O. Stanley,et al.  Constraining connectivity to encourage modularity in HyperNEAT , 2011, GECCO '11.

[27]  Hod Lipson,et al.  Evolving three-dimensional objects with a generative encoding inspired by developmental biology , 2011, ECAL.

[28]  Kenneth O. Stanley,et al.  On the Performance of Indirect Encoding Across the Continuum of Regularity , 2011, IEEE Transactions on Evolutionary Computation.

[29]  Kenneth O. Stanley,et al.  On the deleterious effects of a priori objectives on evolution and representation , 2011, GECCO '11.

[30]  Hod Lipson,et al.  Dynamic Simulation of Soft Heterogeneous Objects , 2012, ArXiv.

[31]  Joshua Evan Auerbach,et al.  On the relationship between environmental and morphological complexity in evolved robots , 2012, GECCO '12.

[32]  Hod Lipson,et al.  Automatic Design and Manufacture of Soft Robots , 2012, IEEE Transactions on Robotics.

[33]  Joshua Evan Auerbach,et al.  On the Relationship Between Environmental and Mechanical Complexity in Evolved Robots , 2012, ALIFE.

[34]  Borys Wróbel,et al.  Co-evolution of morphology and control of soft-bodied multicellular animats , 2012, GECCO '12.

[35]  Kyrre Glette,et al.  Evolving Gaits for Physical Robots with the HyperNEAT Generative Encoding: The Benefits of Simulation , 2013, EvoApplications.

[36]  Hod Lipson,et al.  The evolutionary origins of modularity , 2012, Proceedings of the Royal Society B: Biological Sciences.