GeoReVi: A knowledge discovery and data management tool for subsurface characterization

Abstract Subsurface characterization is an interdisciplinary and multidimensional problem requiring contribution from numerous geoscientific and technical domains. In order to optimize and automate the process of subsurface characterization and structural modeling we developed a modular, open-source software system called GeoReVi (Geological Reservoir Virtualization). The tool implements the knowledge discovery in databases (KDD) process and utilizes techniques from visual analytics for interactive, interdisciplinary, database-bound knowledge discovery and communication. Multidimensional data sets – produced in subsurface and outcrop analog studies – can be imported, shared, transformed, projected, analyzed, modeled, grouped and visualized interactively in a custom-made graphical user interface. The underlying data model facilitates domain experts to efficiently work in multi-user environments. The knowledge discovery potential is illustrated with an exemplary case study.

[1]  D. Arndt,et al.  3D-Modellierung der tiefengeothermischen Potenziale von Hessen – Eingangsdaten und Potenzialausweisung , 2011 .

[2]  Daniel A. Keim,et al.  Knowledge Generation Model for Visual Analytics , 2014, IEEE Transactions on Visualization and Computer Graphics.

[3]  M. Gard,et al.  Global whole-rock geochemical database compilation , 2019 .

[4]  M. Zeleny Management support systems: Towards integrated knowledge management , 1987 .

[5]  M. Zamora,et al.  Permeability anisotropy and its relations with porous medium structure , 2008 .

[6]  Jennifer E. Rowley,et al.  The wisdom hierarchy: representations of the DIKW hierarchy , 2007, J. Inf. Sci..

[7]  Colin F. Williams,et al.  Characterization of rock thermal conductivity by high-resolution optical scanning , 1999 .

[8]  Zu Qin Chen,et al.  Constructing Ontology-Based Petroleum Exploration Database for Knowledge Discovery , 2010 .

[9]  A. Götz,et al.  What classic greywacke (litharenite) can reveal about feldspar diagenesis: An example from Permian Rotliegend sandstone in Hessen, Germany , 2015 .

[10]  Padhraic Smyth,et al.  Knowledge Discovery and Data Mining: Towards a Unifying Framework , 1996, KDD.

[11]  Ingo Sass,et al.  Outcrop analogue study of Permocarboniferous geothermal sandstone reservoir formations (northern Upper Rhine Graben, Germany): impact of mineral content, depositional environment and diagenesis on petrophysical properties , 2016, International Journal of Earth Sciences.

[12]  Mark Bentley,et al.  Reservoir Model Design: A Practitioner's Guide , 2015 .

[13]  Daniel A. Keim,et al.  Solving Problems with Visual Analytics , 2011, FET.

[14]  A case study of the modeling of a hydrothermal reservoir: Khankala deposit of geothermal waters , 2016 .

[15]  Pantelis Liolios,et al.  A relational rock mechanics database scheme with a hierarchical structure , 2011, Comput. Geosci..

[16]  John R. Fanchi Chapter 10 – Fundamentals of Reservoir Characterization , 2002 .

[17]  Lior Rokach,et al.  Introduction to Knowledge Discovery and Data Mining , 2010, Data Mining and Knowledge Discovery Handbook.

[18]  E. F. Codd,et al.  A relational model of data for large shared data banks , 1970, CACM.

[19]  R. Ackoff From Data to Wisdom , 2014 .

[20]  H. Duerrast,et al.  Ultrasonic Laboratory Measurements on Spherical Samples — a Tool for the Investigation of Seismic Anisotropy in Rocks , 2004 .

[21]  Josef Weber,et al.  Deep Geothermal Energy Production in Germany , 2014 .