Mercury's magnetopause and bow shock from MESSENGER Magnetometer observations

We have established the average shape and location of Mercury's magnetopause and bow shock from orbital observations by the MESSENGER Magnetometer. We fit empirical models to midpoints of boundary crossings and probability density maps of the magnetopause and bow shock positions. The magnetopause was fit by a surface for which the position R from the planetary dipole varies as [1 + cos(θ)]−α, where θ is the angle between R and the dipole‐Sun line, the subsolar standoff distance Rss is 1.45 RM (where RM is Mercury's radius), and the flaring parameter α = 0.5. The average magnetopause shape and location were determined under a mean solar wind ram pressure PRam of 14.3 nPa. The best fit bow shock shape established under an average Alfvén Mach number (MA) of 6.6 is described by a hyperboloid having Rss = 1.96 RM and an eccentricity of 1.02. These boundaries move as PRam and MA vary, but their shapes remain unchanged. The magnetopause Rss varies from 1.55 to 1.35 RM for PRam in the range of 8.8–21.6 nPa. The bow shock Rss varies from 2.29 to 1.89 RM for MA in the range of 4.12–11.8. The boundaries are well approximated by figures of revolution. Additional quantifiable effects of the interplanetary magnetic field are masked by the large dynamic variability of these boundaries. The magnetotail surface is nearly cylindrical, with a radius of ~2.7 RM at a distance of 3 RM downstream of Mercury. By comparison, Earth's magnetotail flaring continues until a downstream distance of ~10 Rss.

[1]  V. Formisano,et al.  Observations of Earth's bow shock for low mach numbers , 1971 .

[2]  W. Ip,et al.  Origin of Mercury’s double magnetopause: 3D hybrid simulation study with A.I.K.E.F. , 2012 .

[3]  M. Zuber,et al.  Low‐degree structure in Mercury's planetary magnetic field , 2012 .

[4]  S. Suess,et al.  Compression of the Hermaean magnetosphere by the solar wind , 1979 .

[5]  Christopher T. Russell,et al.  Probabilistic models of the Jovian magnetopause and bow shock locations , 2002 .

[6]  Mehdi Benna,et al.  MESSENGER Observations of Extreme Loading and Unloading of Mercury’s Magnetic Tail , 2010, Science.

[7]  T. Gombosi,et al.  Planetary bow shocks: Asymptotic MHD Mach cones , 2003 .

[8]  E. Greenstadt Quasi-perpendicular/quasi-parallel divisions of Earth's bow shock , 1991 .

[9]  C. Russell On the relative locations of the bow shocks of the terrestrial planets , 1977 .

[10]  I. Cairns,et al.  Three‐dimensional modeling of Earth's bow shock: Shock shape as a function of Alfvén Mach number , 2003 .

[11]  Christopher T. Russell,et al.  A new functional form to study the solar wind control of the magnetopause size and shape , 1997 .

[12]  J. Spreiter,et al.  A new predictive model for determining solar wind-terrestrial planet interactions , 1980 .

[13]  S. Solomon,et al.  Solar wind forcing at Mercury: WSA‐ENLIL model results , 2011 .

[14]  B. Anderson,et al.  Particle signatures of magnetic topology at the magnetopause: AMPTE/CCE observations , 1995 .

[15]  D. Chaussee,et al.  Solar wind flow about the terrestrial planets: 2. Comparison with gas dynamic theory and implications for solar‐planetary interactions , 1983 .

[16]  James A. Slavin,et al.  Observations of Mercury's northern cusp region with MESSENGER's Magnetometer , 2011 .

[17]  K. Glassmeier,et al.  Induced magnetic field effects at planet Mercury , 2004 .

[18]  S. Solomon,et al.  Solar wind alpha particles and heavy ions in the inner heliosphere observed with MESSENGER , 2012 .

[19]  C. Kennel,et al.  CHANGES IN MAGNETOSPHERIC CONFIGURATION DURING SUBSTORM GROWTH PHASE. , 1972 .

[20]  Haje Korth,et al.  The Global Magnetic Field of Mercury from MESSENGER Orbital Observations , 2011, Science.

[21]  D. H. Fairfield,et al.  Average and unusual locations of the Earth's magnetopause and bow shock , 1971 .

[22]  Z.-Q. Liu,et al.  Three dimensional shape of the magnetopause: Global MHD results , 2011 .

[23]  E. W. Hones,et al.  Evolution of the Earth's distant magnetotail: ISEE 3 electron plasma results , 1984 .

[24]  Stephen S. Stahara,et al.  Planetary Mach cones: Theory and observation , 1984 .

[25]  Daniel N. Baker,et al.  MESSENGER observations of Mercury's magnetosphere during northward IMF , 2009 .

[26]  C. Russell,et al.  The magnetosphere of Mercury , 1988 .

[27]  James A. Slavin,et al.  Solar wind flow about the terrestrial planets 1. Modeling bow shock position and shape , 1981 .

[28]  Christopher T. Russell,et al.  Modeling the size and shape of Saturn's magnetopause with variable dynamic pressure , 2006 .

[29]  S. Solomon,et al.  MESSENGER orbital observations of large‐amplitude Kelvin‐Helmholtz waves at Mercury's magnetopause , 2012 .

[30]  C. Russell,et al.  Toward predicting the position of the magnetopause within geosynchronous orbit , 2000 .

[31]  James A. Slavin,et al.  MESSENGER observations of a flux‐transfer‐event shower at Mercury , 2012 .

[32]  Daniel N. Baker,et al.  MESSENGER and Mariner 10 Flyby Observations of Magnetotail Structure and Dynamics at Mercury , 2012 .

[33]  D. Odstrcil Modeling 3-D solar wind structure , 2003 .

[34]  M. Zuber,et al.  MESSENGER Observations of Mercury's Magnetic Field Structure , 2012 .

[35]  S. Solomon,et al.  Modeling of the magnetosphere of Mercury at the time of the first MESSENGER flyby , 2010 .

[36]  J. Slavin Mercury's Magnetosphere , 2002 .

[37]  D. Fairfield Observations of the Shape and Location of the Magnetopause: A Review , 2013 .

[38]  B. Anderson,et al.  The Magnetometer Instrument on MESSENGER , 2007 .

[39]  Xiaoye Zhang,et al.  A three-dimensional asymmetric magnetopause model , 2010 .

[40]  S. Suess,et al.  Mercury: Magnetospheric processes and the atmospheric supply and loss rates , 1981 .

[41]  V. Kalegaev,et al.  A model of Jupiter's magnetospheric magnetic field with variable magnetopause flaring , 2005 .

[42]  J. Slavin,et al.  Planetary bow shocks: Gasdynamic analytic approach , 2003 .

[43]  B. Anderson,et al.  Electron and ion signatures of field line topology at the low-shear magnetopause , 1997 .

[44]  S. A. Boardsen,et al.  An empirical model of the high‐latitude magnetopause , 2000 .

[45]  Uli Auster,et al.  Electromagnetic Induction Effects and Dynamo Action in the Hermean System , 2007 .

[46]  C. Russell,et al.  Solar wind and substorm‐related changes in the lobes of the geomagnetic tail , 1973 .

[47]  David G. Sibeck,et al.  Solar wind control of the magnetopause shape, location, and motion , 1991 .

[48]  C. Russell,et al.  Determining the standoff distance of the bow shock: Mach number dependence and use of models , 1994 .

[49]  L. Blomberg,et al.  Observations of Kelvin‐Helmholtz waves along the dusk‐side boundary of Mercury's magnetosphere during MESSENGER's third flyby , 2010 .

[50]  S. Solomon,et al.  The interplanetary magnetic field environment at Mercury's orbit , 2011 .

[51]  J. Slavin,et al.  Average configuration of the distant (<220 Re) magnetotail: Initial ISEE‐3 magnetic field results , 1983 .

[52]  J. Slavin,et al.  Magnetic flux transfer associated with expansions and contractions of the dayside magnetosphere , 1978 .

[53]  J. Slavin,et al.  Three‐dimensional position and shape of the bow shock and their variation with Alfvénic, sonic and magnetosonic Mach numbers and interplanetary magnetic field orientation , 1995 .

[54]  Daniel N. Baker,et al.  MESSENGER observations of magnetopause structure and dynamics at Mercury , 2013 .

[55]  Daniel N. Baker,et al.  Mercury’s magnetospheric magnetic field after the first two MESSENGER flybys , 2010 .

[56]  A. Summers,et al.  Hydromagnetic flow around the magnetosphere , 1966 .

[57]  Kenneth G. Powell,et al.  Interaction of Mercury with the Solar Wind , 1998 .

[58]  James A. Slavin,et al.  The effect of erosion on the solar wind stand-off distance at Mercury , 1979 .

[59]  J. Spreiter,et al.  Magnetohydrodynamic and gasdynamic theories for planetary bow waves , 2013 .