Control of drop positioning using chemical patterning

We explore how chemical patterning on surfaces can be used to control drop wetting. Both numerical and experimental results are presented to show how the dynamic pathway and equilibrium shape of the drops are altered by a hydrophobic grid. The grid proves a successful way of confining drops and we show that it can be used to alleviate mottle, a degradation in image quality which results from uneven drop coalescence due to randomness in the positions of the drops within the jetted array.