A Guide to Mathematical Quasicrystals

This contribution deals with mathematical and physical properties of discrete structures such as point sets and tilings. The emphasis is on proper generalizations of concepts and ideas from classical crystallography. In particular, we focus on their interplay with various physically motivated equivalence concepts such as local indistinguishability and local equivalence. Various discrete patterns with non-crystallographic symmetries are described in detail, and some of their magic properties are introduced. This perfectly ordered world is augmented by a brief introduction to the stochastic world of random tilings.

[1]  G. C. Shephard,et al.  Tilings and Patterns , 1990 .

[2]  Ludwig Danzer,et al.  Three-dimensional analogs of the planar penrose tilings and quasicrystals , 1989, Discret. Math..

[3]  Kevin Ingersent Matching Rules for Quasicrystalline Tilings , 1991 .

[4]  L. Danzer,et al.  Strictly local growth of Penrose patterns , 1995 .

[5]  At Hof,et al.  On diffraction by aperiodic structures , 1995 .

[6]  P. Kramer,et al.  On Periodic and Non-periodic Space Fillings of E , 1984 .

[7]  D. Gratias,et al.  Lectures on quasicrystals , 1994 .

[8]  Baake,et al.  Ideal and defective vertex configurations in the planar octagonal quasilattice. , 1990, Physical review. B, Condensed matter.

[9]  N. Wiener,et al.  Almost Periodic Functions , 1932, The Mathematical Gazette.

[10]  Jeffrey C. Lagarias,et al.  Geometric Models for Quasicrystals II. Local Rules Under Isometries , 1999, Discret. Comput. Geom..

[11]  M. Schlottmann PERIODIC AND QUASI-PERIODIC LAGUERRE TILINGS , 1993 .

[12]  C. Oguey,et al.  A geometrical approach of quasiperiodic tilings , 1988 .

[13]  R. Schwarzenberger,et al.  N-dimensional crystallography , 1980 .

[14]  Boris Solomyak,et al.  Dynamics of self-similar tilings , 1997, Ergodic Theory and Dynamical Systems.

[15]  U. Grimm,et al.  Modeling Quasicrystal Growth , 2002 .

[16]  A. Katz,et al.  Quasiperiodic Patterns with Icosahedral Symmetry , 1986 .

[17]  J. Socolar,et al.  Quasicrystals. II. Unit-cell configurations. , 1986, Physical review. B, Condensed matter.

[18]  T. Janssen Aperiodic crystals: A contradictio in terminis? , 1988 .

[19]  J. Roth The equivalence of two face-centred icosahedral tilings with respect to local derivability , 1993 .

[20]  P J Steinhardt,et al.  The physics of quasicrystals , 1987 .

[21]  Joachim Hermisson,et al.  A Guide to the Symmetry Structure of Quasiperiodic Tiling Classes , 1997 .

[22]  Hyeong-Chai Jeong,et al.  Constructing Penrose-like tilings from a single prototile and the implications for quasicrystals , 1997 .

[23]  J. Hermisson,et al.  The torus parametrization of quasiperiodic LI-classes , 1997 .

[24]  Michael Baake,et al.  Fractally shaped acceptance domains of quasiperiodic square-triangle tilings with dedecagonal symmetry , 1992 .

[25]  N. D. Bruijn Algebraic theory of Penrose''s non-periodic tilings , 1981 .

[26]  Michael Baake,et al.  TRACE MAPS, INVARIANTS, AND SOME OF THEIR APPLICATIONS , 1993 .

[27]  V. Man'ko,et al.  Group Theoretical Methods in Physics , 1987 .

[28]  P. Kramer,et al.  Dualisation of Voronoi domains and Klotz construction: a general method for the generation of proper space fillings , 1989 .

[29]  B. M. Fulk MATH , 1992 .

[30]  L. Levitov Local rules for quasicrystals , 1988 .

[31]  V. Berthé,et al.  Entropy in deterministic and random systems , 1995 .

[32]  Icosahedral dissectable tilings from the root lattice D6 , 1991 .

[33]  C. Beeli,et al.  Electron microscopy of quasicrystals and the validity of the tiling approach , 1993 .

[34]  Anton Bovier,et al.  GAP LABELLING THEOREMS FOR ONE DIMENSIONAL DISCRETE SCHRÖDINGER OPERATORS , 1992 .

[35]  Michael Baake,et al.  Quasiperiodic tilings with tenfold symmetry and equivalence with respect to local derivability , 1991 .

[37]  R. Lück BASIC IDEAS OF AMMANN BAR GRIDS , 1993 .

[38]  Boris Solomyak,et al.  Corrections to ‘Dynamics of self-similar tilings’ Ergod. Th. & Dynam. Sys.17 (1997), 695–738 , 1999, Ergodic Theory and Dynamical Systems.

[39]  Joachim Hermisson,et al.  Random tilings: concepts and examples , 1998 .

[40]  Franz Gähler,et al.  Matching rules for quasicrystals: the composition-decomposition method , 1993 .

[41]  A. Katz Matching Rules and Quasiperiodicity: the Octagonal Tilings , 1995 .

[42]  P. Kramer,et al.  On periodic and non-periodic space fillings of E m obtained by projection , 1984 .

[43]  Thang T. Q. Lê Local Rules for Quasiperiodic Tilings , 1997 .

[44]  Jeffrey C. Lagarias,et al.  Geometric Models for Quasicrystals I. Delone Sets of Finite Type , 1999, Discret. Comput. Geom..

[45]  Michael Baake,et al.  Directions in Mathematical Quasicrystals , 2000 .

[46]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .

[47]  K. Niizeki Self-similarity of quasilattices in two dimensions. II. The 'non-Bravais-type' n-gonal quasilattice , 1989 .

[48]  Michael Baake,et al.  THE ROOT LATTICE D4 AND PLANAR QUASILATTICES WITH OCTAGONAL AND DODECAGONAL SYMMETRY , 1991 .

[49]  Root lattices and quasicrystals , 1990, cond-mat/0006062.

[50]  Jiri Patera,et al.  Quasicrystals and Discrete Geometry , 1998 .

[51]  Branko Grünbaum,et al.  Aperiodic tiles , 1992, Discret. Comput. Geom..

[52]  David P. DiVincenzo,et al.  Quasicrystals : the state of the art , 1991 .

[53]  J. Cahn,et al.  Metallic Phase with Long-Range Orientational Order and No Translational Symmetry , 1984 .

[54]  P. Gummelt,et al.  Penrose tilings as coverings of congruent decagons , 1996 .

[55]  Robert V. Moody,et al.  The Mathematics of Long-Range Aperiodic Order , 1997 .

[56]  Andras Suto,et al.  Schrödinger difference equation with deterministic ergodic potentials , 2012, 1203.3646.

[57]  P. Kramer,et al.  Symmetry Concepts for Quasicrystals and Noncommutative Crystallography , 1997 .

[58]  Katz,et al.  Quasiperiodic patterns. , 1985, Physical review letters.

[59]  Levine,et al.  Quasicrystals. I. Definition and structure. , 1986, Physical review. B, Condensed matter.

[60]  The two‐dimensional quasicrystallographic space groups with rotational symmetries less than 23‐fold , 1988 .

[61]  C. Henley,et al.  Random Tiling Models , 1991 .

[62]  A. Authier,et al.  Diffraction Physics , 1998 .

[63]  Ishimasa,et al.  New ordered state between crystalline and amorphous in Ni-Cr particles. , 1985, Physical review letters.

[64]  S. Ben-abraham DEFECTIVE VERTEX CONFIGURATIONS IN QUASICRYSTALLINE STRUCTURES , 1993 .

[65]  J. Suck Prehistory of Quasicrystals , 2002 .

[66]  Peter Kramer,et al.  PLANAR PATTERNS WITH FIVEFOLD SYMMETRY AS SECTIONS OF PERIODIC STRUCTURES IN 4-SPACE , 1990 .

[67]  Elser Comment on "Quasicrystals: A new class of ordered structures" , 1985, Physical review letters.