Impact of the Coulomb field on charged-pion spectra in few-GeV heavy-ion collisions

P. Fonte | O. Svoboda | J. Smyrski | M. Traxler | S. Chernenko | A. Lebedev | C. Sturm | K. Nowakowski | J. Stroth | L. Naumann | G. Korcyl | A. Belyaev | T. Mahmoud | E. Usenko | C. Blume | L. Fabbietti | K. Lapidus | A. Rustamov | I. Selyuzhenkov | Y. Zanevsky | A. Reshetin | F. Guber | V. Wagner | O. Arnold | E. Epple | P. Filip | F. Seck | S. Spataro | P. Bordalo | J. Dreyer | A. Kugler | A. Blanco | C. Franco | B. Kämpfer | C. Höhne | R. Gernhäuser | L. Maier | V. Ladygin | J. Michel | P. Salabura | K. Pysz | V. Metag | T. Hennino | B. Ramstein | P. Rosier | R. Holzmann | A. Ivashkin | I. Ciepał | P. Kurilkin | Y. Sobolev | M. Böhmer | J. Friese | S. Ramos | M. Golubeva | H. Ströbele | O. Fateev | Y. Parpottas | J. A. Garzón | B. Kolb | A. Sadovsky | P. Tlustý | A. Kurepin | W. Koenig | J. Adamczewski-Musch | C. Deveaux | G. Kornakov | L. Chlad | J. Pietraszko | S. Harabasz | J. Wirth | S. Hlavac | U. Singh | T. Matulewicz | L. Silva | R. Lalik | I. Fröhlich | R. Münzer | E. Schwab | J. Siebenson | A. Mangiarotti | R. Kotte | C. Behnke | M. Gumberidze | T. Heinz | A. Ierusalimov | I. Koenig | A. Kurilkin | M. Lorenz | C. Müntz | V. Pechenov | O. Pechenova | W. Przygoda | T. Scheib | H. Schuldes | H. Tsertos | C. Wendisch | M. Parschau | T. Kunz | L. Lopes | P. Zumbruch | A. Malige | N. Rathod | O. Petukhov | A. Belounnas | J. Berger-Chen | R. Greifenhagen | B. Kardan | F. Kornas | S. Maurus | D. Mihaylov | K. Piasecki | P. Rodriguez-Ramos | A. Rost | F. Scozzi | P. Sellheim | S. Spies | M. Szala | M. Wiebusch | K. Sumara | J. Markert | T. Galatyuk | T. Karavicheva | M. Kohls | S. Linev | N. Schild | S. Morozov | M. Nabroth

[1]  J. Stone,et al.  Coulomb effects in low- and medium-energy heavy-ion collisions , 2022, Physics Letters B.

[2]  Santiago de Compostela,et al.  Correlated pion-proton pair emission off hot and dense QCD matter , 2020, Physics Letters B.

[3]  E.Epple,et al.  Charged-pion production in $$\mathbf {Au+Au}$$ collisions at $$\sqrt{\mathbf {s}_{\mathbf {NN}}} = 2.4~{\mathbf {GeV}}$$ , 2020, 2005.08774.

[4]  P. Fonte,et al.  Identical pion intensity interferometry at $$\sqrt{s_{\mathrm{NN}}}=2.4~\hbox {GeV}$$ , 2019, 1910.07885.

[5]  P. Fonte,et al.  Identical pion intensity interferometry in central Au + Au collisions at 1.23A GeV , 2018, Physics Letters B.

[6]  P. Fonte,et al.  Centrality determination of Au + Au collisions at 1.23A GeV with HADES , 2017, 1712.07993.

[7]  A. Andronic,et al.  Decoding the phase structure of QCD via particle production at high energy , 2017, Nature.

[8]  V. Metag,et al.  Meson-nucleus potentials and the search for meson-nucleus bound states , 2017, 1706.09654.

[9]  F. Becattini,et al.  Hadronization conditions in relativistic nuclear collisions and the QCD pseudo-critical line , 2016, 1605.09694.

[10]  Bill Casselman,et al.  Clifford algebras and spinors , 2017 .

[11]  T. Liu,et al.  Statistical hadronization model analysis of hadron yields in p + Nb and Ar + KCl at SIS18 energies , 2015 .

[12]  G. Stoicea,et al.  Systematics of central heavy ion collisions in the 1A GeV regime , 2010, 1005.3418.

[13]  I. Froehlich The Pluto++ Event Generator. , 2009 .

[14]  Y. Wang,et al.  The high-acceptance dielectron spectrometer HADES , 2009, 0902.3478.

[15]  L. Alvarez-Ruso,et al.  Low-energy pions in nuclear matter and ππ photoproduction within a BUU transport model , 2005, Acta Physica Hungarica A) Heavy Ion Physics.

[16]  G. Wolf,et al.  Probing nuclear expansion dynamics with π−/π+-spectra , 1997, nucl-th/9701057.

[17]  W. Willis,et al.  Coulomb effect in single particle distributions , 1996 .

[18]  R. Stock Particle Production in High-Energy Nucleus Nucleus Collisions , 1986 .

[19]  M. Gyulassy,et al.  COULOMB EFFECTS IN RELATIVISTIC NUCLEAR COLLISIONS , 1981 .