From kinetic to collective behavior in thermal transport on semiconductors and semiconductor nanostructures

We present a model which deepens into the role that normal scattering has on the thermal conductivity in semiconductor bulk, micro, and nanoscale samples. Thermal conductivity as a function of the temperature undergoes a smooth transition from a kinetic to a collective regime that depends on the importance of normal scattering events. We demonstrate that in this transition, the key point to fit experimental data is changing the way to perform the average on the scattering rates. We apply the model to bulk Si with different isotopic compositions obtaining an accurate fit. Then we calculate the thermal conductivity of Si thin films and nanowires by only introducing the effective size as additional parameter. The model provides a better prediction of the thermal conductivity behavior valid for all temperatures and sizes above 30 nm with a single expression. Avoiding the introduction of confinement or quantum effects, the model permits to establish the limit of classical theories in the study of the thermal conductivity in nanoscopic systems.

[1]  H. Casimir Note on the conduction of heat in crystals , 1938 .

[2]  J. Ziman,et al.  The thermal conductivity of diamond at low temperatures , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  C. Herring Role of Low-Energy Phonons in Thermal Conduction , 1954 .

[4]  P. Klemens The Scattering of Low-Frequency Lattice Waves by Static Imperfections , 1955 .

[5]  John Ziman,et al.  Thermal conduction in artificial sapphire crystals at low temperatures I. Nearly perfect crystals , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[6]  J. Callaway Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .

[7]  G. A. Slack,et al.  Thermal Conductivity of Silicon and Germanium from 3°K to the Melting Point , 1964 .

[8]  J. Krumhansl Thermal conductivity of insulating crystals in the presence of normal processes , 1965 .

[9]  Robert A. Guyer,et al.  Thermal Conductivity, Second Sound, and Phonon Hydrodynamic Phenomena in Nonmetallic Crystals , 1966 .

[10]  R. Guyer,et al.  Solution of the Linearized Phonon Boltzmann Equation , 1966 .

[11]  G. Nilsson,et al.  Study of the Homology between Silicon and Germanium by Thermal-Neutron Spectrometry , 1972 .

[12]  W. Weber New Bond-Charge Model for the Lattice Dynamics of Diamond-Type Semiconductors , 1974 .

[13]  S. Tamura,et al.  Isotope scattering of dispersive phonons in Ge , 1983 .

[14]  S. Wong,et al.  Temperature-Dependent Thermal Conductivity of Single-Crystal Silicon Layers in SOI Substrates , 1996, Microelectromechanical Systems (MEMS).

[15]  J. Camacho,et al.  Lattice Dynamics in Wurtzite Semiconductors: The Bond Charge Model of CdS , 1999 .

[16]  Alexander A. Balandin,et al.  Phonon heat conduction in a semiconductor nanowire , 2001 .

[17]  Amelia Carolina Sparavigna,et al.  On the isotope effect in thermal conductivity of silicon , 2004 .

[18]  Donald T. Morelli,et al.  Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors , 2002 .

[19]  N. Mingo Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations , 2003 .

[20]  Yiying Wu,et al.  Thermal conductivity of individual silicon nanowires , 2003 .

[21]  Julian D. Gale,et al.  An analytical model for the thermal conductivity of silicon nanostructures , 2005 .

[22]  Madhu Menon,et al.  Thermal conductivity in thin silicon nanowires: phonon confinement effect. , 2007, Nano letters.

[23]  N. Mingo,et al.  Intrinsic lattice thermal conductivity of semiconductors from first principles , 2007 .

[24]  David Jou,et al.  Memory and nonlocal effects in heat transport: From diffusive to ballistic regimes , 2007 .

[25]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[26]  E. Pop,et al.  Impact of phonon-surface roughness scattering on thermal conductivity of thin si nanowires. , 2009, Physical review letters.

[27]  Gernot Deinzer,et al.  Ab initio theory of the lattice thermal conductivity in diamond , 2009 .

[28]  David Broido,et al.  Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge , 2010 .

[29]  P. Royer,et al.  Thermal conductivity of silicon bulk and nanowires: Effects of isotopic composition, phonon confinement, and surface roughness , 2010 .

[30]  Natalio Mingo,et al.  Thermal conductivity of diamond nanowires from first principles , 2012 .

[31]  D. Broido,et al.  Ab initio study of the unusual thermal transport properties of boron arsenide and related materials , 2013 .

[32]  P. B. Allen Improved Callaway model for lattice thermal conductivity , 2013, 1308.3269.

[33]  T. L. Reinecke,et al.  Ab initio thermal transport in compound semiconductors , 2013 .

[34]  Francesco Mauri,et al.  Ab initio variational approach for evaluating lattice thermal conductivity , 2012, 1212.0470.