Exchange interactions from a nonorthogonal basis set: From bulk ferromagnets to the magnetism in low-dimensional graphene systems

We present a computational method to determine the exchange constants in isotropic spin models. The method uses the Hamiltonian and overlap matrices computed from density functional schemes that are based on nonorthogonal basis sets. We demonstrate that the proposed method as implemented on top of the siesta code reproduces the Heisenberg interactions of simple metallic bulk ferromagnets as obtained from former well-established computational approaches. Then we address $sp$ magnetism in graphene nanostructures. For fluorinated graphene we obtain exchange interactions in fairly good agreement with previous calculations using maximally localized Wannier functions and we confirm the theoretical prediction of a ${120}^{\ensuremath{\circ}}$ N\'eel state. Associated with the magnetic edge states of a zigzag graphene nanoribbon we find rapidly decaying exchange interactions, however, with an unconventional distance dependence of $exp(\ensuremath{-}\sqrt{r/\ensuremath{\delta}})$. We show that the stiffness constant derived from the exchange interactions is consistent with a previous estimate based on total energy differences of twisted spin configurations. We highlight that our method is an efficient tool for the analysis of novel hybrid nanostructures where metallic and organic components are integrated to form exotic magnetic patterns.

[1]  Electrons at the Fermi surface , 2011 .

[2]  Rajendra Prasad,et al.  Electronic Structure of Disordered Alloys , 1998 .

[3]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[4]  S. Louie,et al.  Spatially resolving edge states of chiral graphene nanoribbons , 2011, 1101.1141.

[5]  H. Mook,et al.  Temperature Dependence of the Magnetic Excitations in Nickel , 1973 .

[6]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[7]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[8]  H. Ebert,et al.  Dzyaloshinskii–Moriya interactions and magnetic texture in Fe films deposited on transition‐metal dichalcogenides , 2015, 1507.07712.

[9]  R. Pauthenet Spin‐waves in nickel, iron, and yttrium‐iron garnet , 1982 .

[10]  J. Staunton,et al.  Using density functional theory to describe slowly varying fluctuations at finite temperatures: local magnetic moments in Gd and the ‘not so local’ moments of Ni , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[11]  R. Pauthenet Experimental verification of spin‐wave theory in high fields (invited) , 1982 .

[12]  P. Alam ‘K’ , 2021, Composites Engineering.

[13]  L. Szunyogh,et al.  Magnetic phase diagram of an Fe monolayer on W(110) and Ta(110) surfaces based on ab initio calculations , 2015, 1502.07510.

[14]  J. Ferrer,et al.  Systematic pseudopotentials from reference eigenvalue sets for DFT calculations , 2015 .

[15]  Inducing skyrmions in ultrathin Fe films by hydrogen exposure , 2017, Nature Communications.

[16]  Martin Baumgarten,et al.  Magnetic edge states and coherent manipulation of graphene nanoribbons , 2018, Nature.

[17]  Electronic structure and magnetic properties of correlated metals , 2002, cond-mat/0204564.

[18]  G. Fitzgerald,et al.  'I. , 2019, Australian journal of primary health.

[19]  K. Kusakabe,et al.  Peculiar Localized State at Zigzag Graphite Edge , 1996 .

[20]  E. Simon,et al.  Magnetism of a Co monolayer on Pt(111) capped by overlayers of $5d$ elements: a spin-model study , 2018, 1801.09426.

[21]  V. A. Gubanov,et al.  Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys , 1987 .

[22]  J. Ferrer,et al.  Spin signatures in the electrical response of graphene nanogaps. , 2018, Nanoscale.

[23]  M I Katsnelson,et al.  Magnetic correlations at graphene edges: basis for novel spintronics devices. , 2007, Physical review letters.

[24]  Peter Weinberger,et al.  Electron Scattering in Solid Matter , 2005 .

[25]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[26]  J. Palacios,et al.  Theory of projections with nonorthogonal basis sets: Partitioning techniques and effective Hamiltonians , 2014, 1404.2043.

[27]  S. Louie,et al.  Half-metallic graphene nanoribbons , 2006, Nature.

[28]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[29]  Paolo Ruggerone,et al.  Computational Materials Science X , 2002 .

[30]  Ove Jepsen,et al.  Explicit, First-Principles Tight-Binding Theory , 1984 .

[31]  O. Legeza,et al.  Entanglement, excitations, and correlation effects in narrow zigzag graphene nanoribbons , 2016, 1605.03041.

[32]  Josef Kudrnovsky,et al.  Ab initio calculations of exchange interactions, spin-wave stiffness constants, and Curie temperatures of Fe, Co, and Ni , 2001 .

[33]  György Vida,et al.  Domain wall profiles in Co/Ir$_n$/Pt(111) ultrathin films: influence of the Dzyaloshinskii-Moriya interaction , 2016, 1611.09518.

[34]  Efficient index handling of multidimensional periodic boundary conditions , 2001, cond-mat/0104182.

[35]  Chanyong Hwang,et al.  Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons , 2014, Nature.

[36]  P. Alam,et al.  H , 1887, High Explosives, Propellants, Pyrotechnics.

[37]  Ilja Turek,et al.  Electronic Structure of Disordered Alloys, Surfaces and Interfaces , 1996 .

[38]  M. Katsnelson,et al.  Exchange interactions and frustrated magnetism in single-side hydrogenated and fluorinated graphene , 2013, 1306.5190.

[39]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[40]  M. W. Klein,et al.  Magnetic and nonmagnetic impurities in two-dimensional metals , 1975 .

[41]  N. Marzari,et al.  Maximally-localized Wannier Functions: Theory and Applications , 2011, 1112.5411.

[42]  Raja Das,et al.  Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates , 2018, Nature Nanotechnology.

[43]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[44]  U. Nowak,et al.  Skyrmions with Attractive Interactions in an Ultrathin Magnetic Film. , 2016, Physical review letters.

[45]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .

[46]  U. Nowak,et al.  Formation and stability of metastable skyrmionic spin structures with various topologies in an ultrathin film , 2016, 1609.07012.

[47]  M. Katsnelson,et al.  First-principles calculations of magnetic interactions in correlated systems , 1999, cond-mat/9904428.

[48]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[49]  Mikhail I. Katsnelson,et al.  Magnetic interactions in strongly correlated systems: spin and orbital contributions , 2014, 1412.6441.

[50]  P. Weinberger,et al.  First-principles relativistic study of spin waves in thin magnetic films , 2003 .

[51]  G. Shirane,et al.  Spin Waves in 3d Metals , 1968 .

[52]  Ján Minár,et al.  Calculating condensed matter properties using the KKR-Green's function method—recent developments and applications , 2011 .

[53]  Xiang Zhang,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[54]  I. Turek,et al.  Oscillatory curie temperature of two-dimensional ferromagnets. , 2000, Physical review letters.

[55]  Dmytro Pesin,et al.  Spintronics and pseudospintronics in graphene and topological insulators. , 2012, Nature materials.

[56]  A. G. S. Filho,et al.  Physical properties of low-dimensional s p 2 -based carbon nanostructures , 2016 .

[57]  Staunton,et al.  Onsager cavity fields in itinerant-electron paramagnets. , 1992, Physical review letters.

[58]  R. Zeller An elementary derivation of Lloyd's formula valid for full-potential multiple-scattering theory , 2004 .

[59]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[60]  H. Ebert,et al.  Anisotropic exchange coupling in diluted magnetic semiconductors : Ab initio spin-density functional theory , 2009 .