Stochastic simulation in systems biology

Natural systems are, almost by definition, heterogeneous: this can be either a boon or an obstacle to be overcome, depending on the situation. Traditionally, when constructing mathematical models of these systems, heterogeneity has typically been ignored, despite its critical role. However, in recent years, stochastic computational methods have become commonplace in science. They are able to appropriately account for heterogeneity; indeed, they are based around the premise that systems inherently contain at least one source of heterogeneity (namely, intrinsic heterogeneity). In this mini-review, we give a brief introduction to theoretical modelling and simulation in systems biology and discuss the three different sources of heterogeneity in natural systems. Our main topic is an overview of stochastic simulation methods in systems biology. There are many different types of stochastic methods. We focus on one group that has become especially popular in systems biology, biochemistry, chemistry and physics. These discrete-state stochastic methods do not follow individuals over time; rather they track only total populations. They also assume that the volume of interest is spatially homogeneous. We give an overview of these methods, with a discussion of the advantages and disadvantages of each, and suggest when each is more appropriate to use. We also include references to software implementations of them, so that beginners can quickly start using stochastic methods for practical problems of interest.

[1]  S. Rosenberg,et al.  Spontaneous DNA breakage in single living Escherichia coli cells , 2007, Nature Genetics.

[2]  Tatiana T Marquez-Lago,et al.  Binomial tau-leap spatial stochastic simulation algorithm for applications in chemical kinetics. , 2007, The Journal of chemical physics.

[3]  Simon V. Avery,et al.  Microbial cell individuality and the underlying sources of heterogeneity , 2006, Nature Reviews Microbiology.

[4]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[5]  J. Losos,et al.  CONVERGENCE, ADAPTATION, AND CONSTRAINT , 2011, Evolution; international journal of organic evolution.

[6]  David L. Stern,et al.  The genetic causes of convergent evolution , 2013, Nature Reviews Genetics.

[7]  Hannah H. Chang,et al.  Transcriptome-wide noise controls lineage choice in mammalian progenitor cells , 2008, Nature.

[8]  G. Box Robustness in the Strategy of Scientific Model Building. , 1979 .

[9]  Linda R. Petzold,et al.  Improved leap-size selection for accelerated stochastic simulation , 2003 .

[10]  David McMillen,et al.  Biochemical Network Stochastic Simulator (BioNetS): software for stochastic modeling of biochemical networks , 2004, BMC Bioinformatics.

[11]  P. Maini,et al.  Spatial pattern formation in chemical and biological systems , 1997 .

[12]  J. Gonçalves,et al.  Bimodal and Hysteretic Expression in Mammalian Cells from a Synthetic Gene Circuit , 2008, PloS one.

[13]  Caleb E. Finch,et al.  Chance, development, and aging , 2000 .

[14]  Yucheng Hu,et al.  Highly accurate tau-leaping methods with random corrections. , 2009, The Journal of chemical physics.

[15]  Jennifer C. Waters,et al.  Accuracy and precision in quantitative fluorescence microscopy , 2009, The Journal of cell biology.

[16]  Joseph J. W. McDouall Computational Quantum Chemistry: Molecular Structure and Properties in Silico , 2013 .

[17]  D. Gillespie,et al.  Avoiding negative populations in explicit Poisson tau-leaping. , 2005, The Journal of chemical physics.

[18]  Darren J. Wilkinson,et al.  Bayesian methods in bioinformatics and computational systems biology , 2006, Briefings Bioinform..

[19]  P. Swain,et al.  Intrinsic and extrinsic contributions to stochasticity in gene expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Kevin Burrage,et al.  Stochastic Modeling of Naïve T Cell Homeostasis for Competing Clonotypes via the Master Equation , 2010, Multiscale Model. Simul..

[21]  D. Vlachos,et al.  Binomial distribution based tau-leap accelerated stochastic simulation. , 2005, The Journal of chemical physics.

[22]  Jordi Villà-Freixa,et al.  Simulation methods with extended stability for stiff biochemical Kinetics , 2009, BMC Systems Biology.

[23]  Tiejun Li,et al.  Analysis of Explicit Tau-Leaping Schemes for Simulating Chemically Reacting Systems , 2007, Multiscale Model. Simul..

[24]  A. Arkin,et al.  Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. , 1998, Genetics.

[25]  Giancarlo Mauri,et al.  cuTauLeaping: A GPU-Powered Tau-Leaping Stochastic Simulator for Massive Parallel Analyses of Biological Systems , 2014, PloS one.

[26]  Jürgen Pahle,et al.  Biochemical simulations: stochastic, approximate stochastic and hybrid approaches , 2008, Briefings Bioinform..

[27]  A. Arkin,et al.  It's a noisy business! Genetic regulation at the nanomolar scale. , 1999, Trends in genetics : TIG.

[28]  Mads Kærn,et al.  A chance at survival: gene expression noise and phenotypic diversification strategies , 2009, Molecular microbiology.

[29]  H. Hoekstra,et al.  Convergence in pigmentation at multiple levels: mutations, genes and function , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[30]  F. Nori,et al.  Quantum biology , 2012, Nature Physics.

[31]  Andrzej M. Kierzek,et al.  STOCKS: STOChastic Kinetic Simulations of biochemical systems with Gillespie algorithm , 2002, Bioinform..

[32]  Daniel T Gillespie,et al.  Stochastic simulation of chemical kinetics. , 2007, Annual review of physical chemistry.

[33]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[34]  Ioannis G Kevrekidis,et al.  Gene regulatory networks: a coarse-grained, equation-free approach to multiscale computation. , 2005, The Journal of chemical physics.

[35]  Colin S Gillespie,et al.  Stochastic simulation of chemically reacting systems using multi-core processors. , 2012, The Journal of chemical physics.

[36]  T. Elston,et al.  Stochasticity in gene expression: from theories to phenotypes , 2005, Nature Reviews Genetics.

[37]  Kevin Burrage,et al.  Look before you leap: a confidence-based method for selecting species criticality while avoiding negative populations in τ-leaping. , 2011, The Journal of chemical physics.

[38]  D. Bray,et al.  Stochastic simulation of chemical reactions with spatial resolution and single molecule detail , 2004, Physical biology.

[39]  E. O’Shea,et al.  Noise in protein expression scales with natural protein abundance , 2006, Nature Genetics.

[40]  John E. Stone,et al.  Simulation of reaction diffusion processes over biologically relevant size and time scales using multi-GPU workstations , 2014, Parallel Comput..

[41]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[42]  D. Gillespie The chemical Langevin equation , 2000 .

[43]  Paul Harrison,et al.  Computational methods in physics, chemistry and biology : an introduction , 2001 .

[44]  D. Volfson,et al.  Origins of extrinsic variability in eukaryotic gene expression , 2006, Nature.

[45]  Michael A. Gibson,et al.  Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels , 2000 .

[46]  T. Ryan Gregory,et al.  Understanding Natural Selection: Essential Concepts and Common Misconceptions , 2009, Evolution: Education and Outreach.

[47]  Tianhai Tian,et al.  Oscillatory Regulation of Hes1: Discrete Stochastic Delay Modelling and Simulation , 2006, PLoS Comput. Biol..

[48]  Friedrich Schl gl Chemical Reaction Models for Non-Equilibrium Phase Transitions , 2005 .

[49]  S. Leibler,et al.  Bacterial Persistence as a Phenotypic Switch , 2004, Science.

[50]  D. Koshland,et al.  Non-genetic individuality: chance in the single cell , 1976, Nature.

[51]  Melanie Mitchell,et al.  Complexity - A Guided Tour , 2009 .

[52]  Mudita Singhal,et al.  COPASI - a COmplex PAthway SImulator , 2006, Bioinform..

[53]  João Pedro Hespanha,et al.  Approximate Moment Dynamics for Chemically Reacting Systems , 2011, IEEE Transactions on Automatic Control.

[54]  Vladimir A. Kazeev,et al.  Direct Solution of the Chemical Master Equation Using Quantized Tensor Trains , 2014, PLoS Comput. Biol..

[55]  T. Faniran Numerical Solution of Stochastic Differential Equations , 2015 .

[56]  E. O’Shea,et al.  Living with noisy genes: how cells function reliably with inherent variability in gene expression. , 2007, Annual review of biophysics and biomolecular structure.

[57]  Arthur D Lander,et al.  The edges of understanding , 2010, BMC Biology.

[58]  P. Swain,et al.  Gene Regulation at the Single-Cell Level , 2005, Science.

[59]  Dan ie l T. Gil lespie A rigorous derivation of the chemical master equation , 1992 .

[60]  Linda R Petzold,et al.  The slow-scale stochastic simulation algorithm. , 2005, The Journal of chemical physics.

[61]  E. Friedberg,et al.  DNA Repair and Mutagenesis , 2006 .

[62]  M. Thattai,et al.  Intrinsic noise in gene regulatory networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[63]  J. Goutsias,et al.  Markovian dynamics on complex reaction networks , 2012, 1205.5524.

[64]  Yi-fei Wang,et al.  Efficient binomial leap method for simulating chemical kinetics. , 2007, The Journal of chemical physics.

[65]  A. B. Bortz,et al.  A new algorithm for Monte Carlo simulation of Ising spin systems , 1975 .

[66]  J. Paulsson Summing up the noise in gene networks , 2004, Nature.

[67]  J. Goutsias Quasiequilibrium approximation of fast reaction kinetics in stochastic biochemical systems. , 2005, The Journal of chemical physics.

[68]  D. Wilkinson,et al.  Moment closure approximations for stochastic kinetic models with rational rate laws. , 2011, Mathematical biosciences.

[69]  Sui Huang Non-genetic heterogeneity of cells in development: more than just noise , 2009, Development.

[70]  Jacob D. Durrant,et al.  Molecular dynamics simulations and drug discovery , 2011, BMC Biology.

[71]  Radek Erban,et al.  A higher-order numerical framework for stochastic simulation of chemical reaction systems , 2012, BMC Systems Biology.

[72]  Corinne Laplace-Builhé,et al.  The Origin of Phenotypic Heterogeneity in a Clonal Cell Population In Vitro , 2007, PloS one.

[73]  Huan‐Xiang Zhou,et al.  Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. , 2008, Annual review of biophysics.

[74]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[75]  Kevin Burrage,et al.  Parallel and sequential methods for ordinary differential equations , 1995, Numerical analysis and scientific computation.

[76]  Ioannis G Kevrekidis,et al.  A constrained approach to multiscale stochastic simulation of chemically reacting systems. , 2011, The Journal of chemical physics.

[77]  D. Gillespie Markov Processes: An Introduction for Physical Scientists , 1991 .

[78]  Xingming Zhao,et al.  Computational Systems Biology , 2013, TheScientificWorldJournal.

[79]  Eric Renshaw Modelling biological populations in space and time , 1990 .

[80]  Kevin Burrage,et al.  Inferring diffusion in single live cells at the single-molecule level , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[81]  D. Tranchina,et al.  Stochastic mRNA Synthesis in Mammalian Cells , 2006, PLoS biology.

[82]  Yiannis Kaznessis,et al.  Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. , 2005, The Journal of chemical physics.

[83]  Jeremy Gunawardena,et al.  Some lessons about models from Michaelis and Menten , 2012, Molecular biology of the cell.

[84]  Sheng Wu,et al.  StochKit2: software for discrete stochastic simulation of biochemical systems with events , 2011, Bioinform..

[85]  R. Erban,et al.  Stochastic modelling of reaction–diffusion processes: algorithms for bimolecular reactions , 2009, Physical biology.

[86]  Linda R Petzold,et al.  Efficient step size selection for the tau-leaping simulation method. , 2006, The Journal of chemical physics.

[87]  Jeffrey W. Smith,et al.  Stochastic Gene Expression in a Single Cell , .

[88]  F. Schlögl Chemical reaction models for non-equilibrium phase transitions , 1972 .

[89]  David Welch,et al.  Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.

[90]  Kirsten L. Frieda,et al.  A Stochastic Single-Molecule Event Triggers Phenotype Switching of a Bacterial Cell , 2008, Science.

[91]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[92]  D. Gillespie Approximate accelerated stochastic simulation of chemically reacting systems , 2001 .

[93]  Ignacio A. Rodriguez-Brenes,et al.  Evolutionary dynamics of feedback escape and the development of stem-cell–driven cancers , 2011, Proceedings of the National Academy of Sciences.

[94]  Jerome T. Mettetal,et al.  Stochastic switching as a survival strategy in fluctuating environments , 2008, Nature Genetics.

[95]  Linda R Petzold,et al.  Adaptive explicit-implicit tau-leaping method with automatic tau selection. , 2007, The Journal of chemical physics.

[96]  A. Casadevall,et al.  Reductionistic and Holistic Science , 2011, Infection and Immunity.

[97]  Manuel Barrio,et al.  Efficient simulation of stochastic chemical kinetics with the Stochastic Bulirsch-Stoer extrapolation method , 2014, BMC Systems Biology.

[98]  D. Gillespie,et al.  Linear noise approximation is valid over limited times for any chemical system that is sufficiently large. , 2012, IET systems biology.

[99]  Johan Hattne,et al.  Stochastic reaction-diffusion simulation with MesoRD , 2005, Bioinform..

[100]  Derek Gatherer,et al.  So what do we really mean when we say that systems biology is holistic? , 2010, BMC Systems Biology.

[101]  N. Barkai,et al.  Variability and robustness in biomolecular systems. , 2007, Molecular cell.

[102]  Evelyn Fox Keller,et al.  The Mirage of a Space Between Nature and Nurture , 2010 .

[103]  Desmond J. Higham,et al.  An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations , 2001, SIAM Rev..

[104]  Arieh Iserles A First Course in the Numerical Analysis of Differential Equations: Multigrid techniques , 1996 .

[105]  Adrian H Elcock,et al.  Models of macromolecular crowding effects and the need for quantitative comparisons with experiment. , 2010, Current opinion in structural biology.

[106]  Iain G. Johnston,et al.  Mitochondrial Variability as a Source of Extrinsic Cellular Noise , 2011, PLoS Comput. Biol..

[107]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[108]  Desmond J. Higham,et al.  Modeling and Simulating Chemical Reactions , 2008, SIAM Rev..

[109]  Gábor Balázsi,et al.  Mapping the Environmental Fitness Landscape of a Synthetic Gene Circuit , 2012, PLoS Comput. Biol..

[110]  Xiaodong Cai,et al.  Unbiased tau-leap methods for stochastic simulation of chemically reacting systems. , 2008, The Journal of chemical physics.

[111]  Mustafa Khammash,et al.  Parameter Estimation and Model Selection in Computational Biology , 2010, PLoS Comput. Biol..

[112]  A. van Oudenaarden,et al.  Using Gene Expression Noise to Understand Gene Regulation , 2012, Science.

[113]  Peter D. Keightley,et al.  High genomic deleterious mutation rates in hominids , 1999, Nature.

[114]  Marc Mangel,et al.  Conditioned averages in chemical kinetics , 1981 .

[115]  Julien F. Ollivier,et al.  Colored extrinsic fluctuations and stochastic gene expression , 2008, Molecular systems biology.

[116]  Ben Lehner Selection to minimise noise in living systems and its implications for the evolution of gene expression , 2008, Molecular systems biology.

[117]  J. Derisi,et al.  Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise , 2006, Nature.

[118]  K. Burrage,et al.  Binomial leap methods for simulating stochastic chemical kinetics. , 2004, The Journal of chemical physics.

[119]  Eric Vanden-Eijnden,et al.  Nested stochastic simulation algorithm for chemical kinetic systems with disparate rates. , 2005, The Journal of chemical physics.

[120]  J. Raser,et al.  Noise in Gene Expression: Origins, Consequences, and Control , 2005, Science.

[121]  A. Oudenaarden,et al.  Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences , 2008, Cell.

[122]  Paul J. Choi,et al.  Quantifying E. coli Proteome and Transcriptome with Single-Molecule Sensitivity in Single Cells , 2010, Science.

[123]  Bin Min,et al.  A weak second order tau-leaping method for chemical kinetic systems. , 2011, The Journal of chemical physics.

[124]  William W. Chen,et al.  Classic and contemporary approaches to modeling biochemical reactions. , 2010, Genes & development.

[125]  D. Gillespie,et al.  A diffusional bimolecular propensity function. , 2009, The Journal of chemical physics.

[126]  Radek Erban,et al.  STOCHSIMGPU: parallel stochastic simulation for the Systems Biology Toolbox 2 for MATLAB , 2011, Bioinform..

[127]  Haluk Resat,et al.  Multinomial tau-leaping method for stochastic kinetic simulations. , 2007, The Journal of chemical physics.

[128]  Tianhai Tian,et al.  A multi-scaled approach for simulating chemical reaction systems. , 2004, Progress in biophysics and molecular biology.

[129]  D. Volfson,et al.  Delay-induced stochastic oscillations in gene regulation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[130]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[131]  K. Burrage,et al.  Stochastic chemical kinetics and the total quasi-steady-state assumption: application to the stochastic simulation algorithm and chemical master equation. , 2008, The Journal of chemical physics.

[132]  Hong Li,et al.  Efficient formulation of the stochastic simulation algorithm for chemically reacting systems. , 2004, The Journal of chemical physics.

[133]  D. Wilkinson Stochastic modelling for quantitative description of heterogeneous biological systems , 2009, Nature Reviews Genetics.

[134]  M. Mangel The Theoretical Biologist's Toolbox: Quantitative Methods for Ecology and Evolutionary Biology , 2006 .

[135]  Muruhan Rathinam,et al.  Stiffness in stochastic chemically reacting systems: The implicit tau-leaping method , 2003 .

[136]  Roger Brent,et al.  Detailed Simulations of Cell Biology with Smoldyn 2.1 , 2010, PLoS Comput. Biol..

[137]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[138]  Andrew Mugler,et al.  A stochastic spectral analysis of transcriptional regulatory cascades , 2008, Proceedings of the National Academy of Sciences.

[139]  Andreas Hellander,et al.  Perspective: Stochastic algorithms for chemical kinetics. , 2013, The Journal of chemical physics.

[140]  T. Franosch,et al.  Anomalous transport in the crowded world of biological cells , 2013, Reports on progress in physics. Physical Society.

[141]  M. Khammash,et al.  The finite state projection algorithm for the solution of the chemical master equation. , 2006, The Journal of chemical physics.

[142]  R. Ellis Macromolecular crowding : obvious but underappreciated , 2022 .

[143]  Roger B. Sidje,et al.  Multiscale Modeling of Chemical Kinetics via the Master Equation , 2008, Multiscale Model. Simul..

[144]  W. Huisinga,et al.  Solving the chemical master equation for monomolecular reaction systems analytically , 2006, Journal of mathematical biology.

[145]  O. Wolkenhauer Why model? , 2013, Front. Physiol..

[146]  A. Oudenaarden,et al.  Cellular Decision Making and Biological Noise: From Microbes to Mammals , 2011, Cell.

[147]  C. Rao,et al.  Control, exploitation and tolerance of intracellular noise , 2002, Nature.

[148]  A. Arkin,et al.  Stochastic mechanisms in gene expression. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[149]  Andreas Hellander,et al.  URDME: a modular framework for stochastic simulation of reaction-transport processes in complex geometries , 2012, BMC Systems Biology.

[150]  Muruhan Rathinam,et al.  Consistency and Stability of Tau-Leaping Schemes for Chemical Reaction Systems , 2005, Multiscale Model. Simul..

[151]  Melvin K. Simmons,et al.  Hybrid simulation of cellular behavior , 2004, Bioinform..

[152]  K Burrage,et al.  Anomalous diffusion and multifractional Brownian motion: simulating molecular crowding and physical obstacles in systems biology. , 2012, IET systems biology.

[153]  J. Rawlings,et al.  Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics , 2002 .

[154]  Jeremy Gunawardena,et al.  Models in biology: ‘accurate descriptions of our pathetic thinking’ , 2014, BMC Biology.

[155]  W. Huisinga,et al.  A Dynamical Low-Rank Approach to the Chemical Master Equation , 2008, Bulletin of mathematical biology.

[156]  Vlatko Vedral,et al.  Quantum physics meets biology , 2009, HFSP journal.

[157]  Christian A Yates,et al.  Recycling random numbers in the stochastic simulation algorithm. , 2013, The Journal of chemical physics.

[158]  C. Rao,et al.  Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm , 2003 .

[159]  Darren J. Wilkinson Stochastic Modelling for Systems Biology , 2006 .

[160]  Michail Stamatakis,et al.  A common repressor pool results in indeterminacy of extrinsic noise. , 2011, Chaos.

[161]  Michael P H Stumpf,et al.  A general moment expansion method for stochastic kinetic models. , 2013, The Journal of chemical physics.

[162]  A. E. Hirsh,et al.  Noise Minimization in Eukaryotic Gene Expression , 2004, PLoS biology.

[163]  Scott B. Baden,et al.  Fast Monte Carlo Simulation Methods for Biological Reaction-Diffusion Systems in Solution and on Surfaces , 2008, SIAM J. Sci. Comput..

[164]  Masanori Koyama,et al.  Weak Error Analysis of Numerical Methods for Stochastic Models of Population Processes , 2011, Multiscale Model. Simul..

[165]  George M Yousef,et al.  Personalized Medicine: Marking a New Epoch in Cancer Patient Management , 2010, Molecular Cancer Research.

[166]  P. Provero,et al.  Genome-wide signatures of convergent evolution in echolocating mammals , 2013, Nature.

[167]  S. E. Reece,et al.  Adaptive noise , 2013, Proceedings of the Royal Society B: Biological Sciences.