New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk
暂无分享,去创建一个
Simon C. Potter | P. Elliott | M. Jarvelin | L. Coin | D. Melzer | A. Singleton | C. Gieger | W. Rathmann | T. Spector | J. Pankow | L. Ferrucci | R. Mägi | M. McCarthy | P. Deloukas | E. Zeggini | F. Hu | D. Lawlor | G. Abecasis | U. Thorsteinsdóttir | A. Kong | L. Peltonen | K. Stefánsson | S. Mccarroll | D. Altshuler | E. Boerwinkle | V. Salomaa | M. Perola | T. Hansen | O. Pedersen | N. Grarup | T. Jørgensen | C. Lindgren | L. Groop | M. Laakso | D. Schlessinger | J. O’Connell | F. Collins | S. Bergmann | M. Boehnke | S. Heath | M. Mangino | G. Lathrop | T. Frayling | B. Shields | M. Weedon | A. Hattersley | C. Groves | N. W. Rayner | N. Timpson | S. Bumpstead | R. Gwilliam | S. Potter | C. Cooper | K. Ardlie | R. Bergman | I. Borecki | A. Elliott | P. Scheet | A. Hingorani | G. Zhai | S. Grundy | A. Dehghan | F. Rivadeneira | C. Fox | G. Thorleifsson | V. Steinthorsdottir | J. Hui | J. Beilby | L. Palmer | J. Kaprio | H. Wichmann | M. Uda | D. Siscovick | S. Wild | U. Sovio | B. Penninx | G. Willemsen | P. Sethupathy | M. Province | J. Peden | S. Ripatti | M. Sandhu | R. Mahley | E. Ingelsson | M. Marmot | C. Meisinger | L. Scott | K. Mohlke | L. Bonnycastle | M. Erdos | H. Stringham | P. Chines | A. Jackson | A. Swift | T. Buchanan | T. Valle | J. Tuomilehto | B. Knight | A. Doney | B. Voight | V. Lyssenko | J. Florez | B. Isomaa | T. Tuomi | J. Rotter | R. Sladek | G. Rocheleau | C. Dina | S. Hadjadj | B. Balkau | G. Charpentier | D. Meyre | P. Froguel | T. Illig | L. Lind | D. Zélénika | S. Sharp | A. Syvänen | I. Rudan | D. Posthuma | E. D. de Geus | M. Stumvoll | K. Silander | J. Meigs | N. Wareham | J. Dupuis | K. Rice | J. Hottenga | H. Grallert | A. Hamsten | P. Magnusson | N. Pedersen | A. Jula | I. Prokopenko | A. Silveira | P. Franks | G. Walters | V. Mooser | P. Barter | N. Soranzo | R. Benediktsson | G. Paolisso | S. Ebrahim | Y. Böttcher | M. Roden | C. Herder | R. McPherson | H. Watkins | I. Day | A. Gloyn | M. Sampson | K. Borch-Johnsen | S. Koskinen | I. Barroso | A. Bennett | Naomi Hammond | N. Hassanali | T. Johnson | C. Hayward | M. Kaakinen | S. Kanoni | O. Polašek | V. Vitart | H. Campbell | G. Dedoussis | S. Mukherjee | P. Vollenweider | G. Waeber | James F. Wilson | G. Smith | P. Galan | S. Hercberg | R. Clarke | A. Manning | J. Luan | N. Forouhi | G. Hallmans | J. Kuusisto | C. Langenberg | N. Bouatia-Naji | A. Bonnefond | F. Pattou | S. Sanna | A. Scuteri | P. Meneton | Y. Ben-Shlomo | A. Shuldiner | A. Cao | N. Glazer | Y. Aulchenko | B. Mitchell | D. Rybin | Man Li | M. Cornelis | G. Sigurðsson | B. Thorand | C. Palmer | L. Qi | M. Goodarzi | A. Hartikainen | A. Hicks | M. Kumari | A. Pouta | A. Ruokonen | J. Zhao | M. Bochud | S. Bornstein | U. Gyllensten | M. Kivimaki | K. Kyvik | P. Pramstaller | P. Schwarz | H. Syddall | E. Brunner | D. Hillman | S. Visvikis-Siest | A. Pfeiffer | D. Nathan | J. Tichet | L. McCulloch | P. Navarro | Gabriel J Crawford | C. Franklin | P. Johnson | W. Kao | F. Payne | P. Shrader | T. Sparsø | E. Wheeler | J. Randall | M. Zillikens | M. Cooper | P. Kovacs | I. Pichler | A. Tönjes | D. Waterworth | F. Karpe | M. Neville | O. Rolandsson | C. Lecoeur | K. V. van Dijk | U. Seedorf | J. Hung | J. Yarnell | Y. Ariyurek | C. Pattaro | N. Vogelzangs | J. Egan | R. Frants | O. Le Bacquer | M. Franzosi | S. Naitza | J. Delplanque | A. Walley | R. Roccasecca | M. Martínez-Larrad | P. An | M. Serrano-Ríos | N. Smith | L. Crisponi | A. Sandbaek | B. Zethelius | A. Sayer | J. Spranger | M. van Hoek | Y. A. Kesaniemi | R. Pakyz | K. Ward | Laila Simpson | P. Henneman | D. Pearson | A. Fischer-Rosinský | J. Graessler | Daniel S Pearson | Erik J G Sijbrands | T. Lajunen | Yun Li | C. Zabena | G. Williams | R. Saxena | Xijing Han | Dhiraj Varma | Y. Chen | Kijoung Song | M. Orrù | J. Mcateer | A. Morris | Gabriel Crawford | Christine Cavalcanti-Proença | R. Watanabe | A. Uitterlinden | Narisu Narisu | Peter J Wagner | J. Witteman | A. Goel | A. Wright | Toshiko Tanaka | A. Hofman | B. Oostra | C. V. van Duijn | J. Perry | D. Boomsma | B. Psaty | A. Morris | R. Loos | A. Fedson | M. Morken | M. McCarthy | K. W. van Dijk | A. Wright | A. Wright | Daniel S. Pearson | T. Hansen | F. Hu | A. Jackson | M. McCarthy | Naomi Hammond | A. Wright | Y. Kesaniemi | E. J. G. Sijbrands | C. Palmer | Simon C. Potter
[1] Jean Tichet,et al. Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia , 2009, Nature Genetics.
[2] Nicola L. Beer,et al. The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver , 2009, Human molecular genetics.
[3] M. Daly,et al. Identifying Relationships among Genomic Disease Regions: Predicting Genes at Pathogenic SNP Associations and Rare Deletions , 2009, PLoS genetics.
[4] N. Sattar,et al. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials , 2009, The Lancet.
[5] J. Todd,et al. Rare Variants of IFIH1, a Gene Implicated in Antiviral Responses, Protect Against Type 1 Diabetes , 2009, Science.
[6] P. O’Reilly,et al. Eight blood pressure loci identified by genome-wide association study of 34,433 people of European ancestry , 2009, Nature genetics.
[7] B. Pitt. Faculty Opinions recommendation of The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-beta signaling pathways. , 2008 .
[8] C. Hoggart,et al. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population , 2008, Nature Genetics.
[9] Mark I McCarthy,et al. Type 2 diabetes: new genes, new understanding. , 2008, Trends in genetics : TIG.
[10] Christian Gieger,et al. Genetics Meets Metabolomics: A Genome-Wide Association Study of Metabolite Profiles in Human Serum , 2008, PLoS genetics.
[11] M. Rieder,et al. Common Missense Variant in the Glucokinase Regulatory Protein Gene Is Associated With Increased Plasma Triglyceride and C-Reactive Protein but Lower Fasting Glucose Concentrations , 2008, Diabetes.
[12] R. Holman,et al. 10-year follow-up of intensive glucose control in type 2 diabetes. , 2008, The New England journal of medicine.
[13] Joshua M. Korn,et al. Integrated detection and population-genetic analysis of SNPs and copy number variation , 2008, Nature Genetics.
[14] P. Newsholme,et al. Saturated and unsaturated (including arachidonic acid) non-esterified fatty acid modulation of insulin secretion from pancreatic beta-cells. , 2008, Biochemical Society transactions.
[15] M. Patti,et al. The emerging genetic architecture of type 2 diabetes. , 2008, Cell metabolism.
[16] B. Balkau,et al. The Common P446L Polymorphism in GCKR Inversely Modulates Fasting Glucose and Triglyceride Levels and Reduces Type 2 Diabetes Risk in the DESIR Prospective General French Population , 2008, Diabetes.
[17] J. Florez. Newly identified loci highlight beta cell dysfunction as a key cause of type 2 diabetes: Where are the insulin resistance genes? , 2008, Diabetologia.
[18] Xiao-Hua Zhou,et al. Statistical Methods for Meta‐Analysis , 2008 .
[19] Jean Tichet,et al. A Polymorphism Within the G6PC2 Gene Is Associated with Fasting Plasma Glucose Levels , 2008, Science.
[20] M. Daly,et al. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants , 2008, Genetic epidemiology.
[21] John D. Storey,et al. Mapping the Genetic Architecture of Gene Expression in Human Liver , 2008, PLoS biology.
[22] D. Stephan,et al. A survey of genetic human cortical gene expression , 2007, Nature Genetics.
[23] T. Nielsen,et al. The GCKR rs780094 polymorphism is associated with elevated fasting serum triacylglycerol, reduced fasting and OGTT-related insulinaemia, and reduced risk of type 2 diabetes , 2007, Diabetologia.
[24] L. Liang,et al. A genome-wide association study of global gene expression , 2007, Nature Genetics.
[25] P. Donnelly,et al. A new multipoint method for genome-wide association studies by imputation of genotypes , 2007, Nature Genetics.
[26] Marcia M. Nizzari,et al. Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and Triglyceride Levels , 2007, Science.
[27] M. Stephens,et al. Imputation-Based Analysis of Association Studies: Candidate Regions and Quantitative Traits , 2007, PLoS genetics.
[28] N. Mitro,et al. The nuclear receptor LXR is a glucose sensor , 2007, Nature.
[29] D. Drucker. The role of gut hormones in glucose homeostasis. , 2007, The Journal of clinical investigation.
[30] D. Melzer,et al. A common haplotype of the glucokinase gene alters fasting glucose and birth weight: association in six studies and population-genetics analyses. , 2006, American journal of human genetics.
[31] Anushya Muruganujan,et al. Applications for protein sequence–function evolution data: mRNA/protein expression analysis and coding SNP scoring tools , 2006, Nucleic Acids Res..
[32] L. Palmer,et al. Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. , 2006, Human molecular genetics.
[33] C. Julier,et al. Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism , 2006, Nature Genetics.
[34] J. Chiang,et al. A Prospero-related Homeodomain Protein Is a Novel Co-regulator of Hepatocyte Nuclear Factor 4α That Regulates the Cholesterol 7α-Hydroxylase Gene* , 2006, Journal of Biological Chemistry.
[35] D. Pereg,et al. Normal fasting plasma glucose levels and type 2 diabetes in young men. , 2005, The New England journal of medicine.
[36] D. Clemmons. Role of Insulin-Like Growth Factor Iin Maintaining Normal Glucose Homeostasis , 2005, Hormone Research in Paediatrics.
[37] W. Gold,et al. A novel gene family induced by acute inflammation in endothelial cells. , 2004, Gene.
[38] Satchidananda Panda,et al. BMAL1 and CLOCK, Two Essential Components of the Circadian Clock, Are Involved in Glucose Homeostasis , 2004, PLoS biology.
[39] Yong-Sik Kim,et al. GLIS3, a novel member of the GLIS subfamily of Krüppel-like zinc finger proteins with repressor and activation functions. , 2003, Nucleic acids research.
[40] Daniel J Zaccaro,et al. Minimal model-based insulin sensitivity has greater heritability and a different genetic basis than homeostasis model assessment or fasting insulin. , 2003, Diabetes.
[41] Ralph B D'Agostino,et al. Fasting and postchallenge glycemia and cardiovascular disease risk: the Framingham Offspring Study. , 2002, Diabetes care.
[42] Alphonso Brown,et al. Meta-analysis, Decision Analysis and Cost-Effectiveness Analysis: Methods for Quantitative Synthesis in Medicine , 2002 .
[43] J. Ioannidis,et al. Replication validity of genetic association studies , 2001, Nature Genetics.
[44] S. Henikoff,et al. Predicting deleterious amino acid substitutions. , 2001, Genome research.
[45] F. Pattou,et al. Identification and Purification of Functional Human β-cells by a New Specific Zinc-fluorescent Probe , 2001, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.
[46] Warren C. Lathe,et al. Prediction of deleterious human alleles. , 2001, Human molecular genetics.
[47] C. Dina,et al. The gene MAPK8IP1, encoding islet-brain-1, is a candidate for type 2 diabetes , 2000, Nature Genetics.
[48] K. Roeder,et al. Genomic Control for Association Studies , 1999, Biometrics.
[49] Steven M Reppert,et al. mCRY1 and mCRY2 Are Essential Components of the Negative Limb of the Circadian Clock Feedback Loop , 1999, Cell.
[50] S. Yusuf,et al. The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. , 1999, Diabetes care.
[51] Uk-Prospective-Diabetes-Study-Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33) , 1998, The Lancet.
[52] M. Birnbaum,et al. Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Glut-2 , 1997, Nature Genetics.
[53] Olof Larsson,et al. Activation by adrenaline of a low-conductance G protein-dependent K+ channel in mouse pancreatic B cells , 1991, Nature.
[54] C. Wollheim,et al. Glucose and carbachol generate 1,2-diacylglycerols by different mechanisms in pancreatic islets. , 1988, The Journal of clinical investigation.
[55] F M Matschinsky,et al. Ca2+, cAMP, and phospholipid-derived messengers in coupling mechanisms of insulin secretion. , 1987, Physiological reviews.
[56] D. Porte,et al. Relationships between fasting plasma glucose levels and insulin secretion during intravenous glucose tolerance tests. , 1976, The Journal of clinical endocrinology and metabolism.
[57] D. Altshuler,et al. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion , 2009, Nature Genetics.
[58] Christian Gieger,et al. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts , 2009, Nature Genetics.
[59] Inês Barroso,et al. Variants in MTNR1B influence fasting glucose levels , 2009, Nature Genetics.
[60] Christian Gieger,et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation , 2009, Nature Genetics.
[61] P. Elliott,et al. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk , 2009, Nature Genetics.
[62] R. Collins,et al. Common variants at 30 loci contribute to polygenic dyslipidemia , 2009, Nature Genetics.
[63] S. Schinner. Intensive Blood Glucose Control and Vascular Outcomes in Patients with Type 2 Diabetes , 2009 .
[64] Christian Gieger,et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk , 2010, Nature Genetics.
[65] Yong J. Lee,et al. Cross-talk between JIP3 and JIP1 during Glucose Deprivation: SEK1-JNK2 and Akt1 act as mediators , 2005 .
[66] S. Bonner-Weir,et al. Five Stages of Evolving-Cell Dysfunction During Progression to Diabetes , 2004 .
[67] R. Santer,et al. Mutations in GLUT2, the gene for the liver-type glucose transporter, in patients with Fanconi-Bickel syndrome , 1998, Nature Genetics.
[68] M. Stoffel,et al. Mutations in the hepatocyte nuclear factor-4α gene in maturity-onset diabetes of the young (MODY1) , 1996, Nature.
[69] Yurii S. Aulchenko,et al. BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btm108 Genetics and population analysis GenABEL: an R library for genome-wide association analysis , 2022 .