Tracking the model: Data assimilation by artificial neural network
暂无分享,去创建一个
Haroldo F. de Campos Velho | Rosângela Saher Corrêa Cintra | Steven Cocke | R. Cintra | H. Velho | S. Cocke
[1] Takemasa Miyoshi,et al. Local Ensemble Transform Kalman Filtering with an AGCM at a T159/L48 Resolution , 2007 .
[2] M. B. Mathur,et al. Florida State University's Tropical Prediction Model , 1973 .
[3] T. Başar,et al. A New Approach to Linear Filtering and Prediction Problems , 2001 .
[4] Haroldo F. de Campos Velho,et al. Multilayer Perceptron on data assimilation applied to FSU global model , 2015 .
[5] Tatsuoki Takeda,et al. Applying a Neural Network Collocation Method to an Incompletely Known Dynamical System via Weak Constraint Data Assimilation , 2003 .
[6] Ionel Michael Navon,et al. Performance of 4D-Var with Different Strategies for the Use of Adjoint Physics with the FSU Global Spectral Model , 2000 .
[7] M. Ghil,et al. Data assimilation in meteorology and oceanography , 1991 .
[8] Haroldo Fraga de Campos,et al. A new multi-particle collision algorithm for optimization in a high performance environment , 2008 .
[9] Edward N. Lorenz,et al. GENERATION OF AVAILABLE POTENTIAL ENERGY AND THE INTENSITY OF THE GENERAL CIRCULATION , 1960 .
[10] Christopher K. Wikle,et al. Atmospheric Modeling, Data Assimilation, and Predictability , 2005, Technometrics.
[11] Marco Wiering,et al. 2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) , 2011, IJCNN 2011.
[12] R. Daley. Atmospheric Data Analysis , 1991 .
[13] Steven Cocke,et al. Seasonal Predictions Using a Regional Spectral Model Embedded within a Coupled Ocean–Atmosphere Model , 2000 .
[14] Rosangela,et al. A Local Ensemble Transform Kalman Filter Data Assimilation System for the Global FSU Atmospheric Model , 2015 .
[15] William W. Hsieh,et al. Applying Neural Network Models to Prediction and Data Analysis in Meteorology and Oceanography. , 1998 .
[16] Haroldo F. de Campos Velho,et al. GLOBAL DATA ASSIMILATION USING ARTIFICIAL NEURAL NETWORKS IN SPEEDY MODEL , 2011 .
[17] A. Hall,et al. Adaptive Switching Circuits , 2016 .
[18] Haroldo F. de Campos Velho,et al. Neural network for performance improvement in atmospheric prediction systems: Data Assimilation , 2016 .
[19] R. E. Kalman,et al. New Results in Linear Filtering and Prediction Theory , 1961 .
[20] Haroldo de Campos Velho,et al. Artificial Neural Networks emulating Representer Method at a shallow water model 2D , 2016 .
[21] Steven Cocke,et al. Data assimilation by artificial neural networks for the global FSU atmospheric model: Surface pressure , 2015, 2015 Latin America Congress on Computational Intelligence (LA-CCI).
[22] Haroldo F. de Campos Velho,et al. Data assimilation: Particle filter and artificial neural networks , 2008 .
[23] Haroldo F. de Campos Velho,et al. New approach to applying neural network in nonlinear dynamic model , 2008 .
[24] Istvan Szunyogh,et al. A local ensemble transform Kalman filter data assimilation system for the NCEP global model , 2008 .
[25] Istvan Szunyogh,et al. A Local Ensemble Kalman Filter for Atmospheric Data Assimilation , 2002 .
[26] Joseph Smagorjnsky,et al. The Beginnings of Numerical Weather Prediction and General Circulation Modeling: Early Recollections , 1983 .
[27] Takemasa Miyoshi,et al. ENSEMBLE KALMAN FILTER EXPERIMENTS WITH A PRIMITIVE-EQUATION GLOBAL MODEL , 2005 .
[28] S. Haykin,et al. Adaptive Filter Theory , 1986 .
[29] Lennart Bengtsson. From short-range barotropic modelling to extended-range global weather prediction: a 40-year perspective , 1999 .
[30] G. Evensen. Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .
[31] Istvan Szunyogh,et al. Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter , 2005, physics/0511236.
[32] Haroldo F. de Campos Velho,et al. New learning strategy for supervised neural network: MPCA meta-heuristic approach , 2016 .