Universal source controlled channel decoding with nonsystematic quick-look-in turbo codes

Utilization of redundancy left in a channel coded sequence can improve channel decoding performance. Stronger improvement can usually be achieved with nonsystematic encoding. However, nonsystematic codes recently proposed for this problem are not robust to the statistical parameters governing a sequence and thus should not be used without prior knowledge of these parameters. In this work, decoders of nonsystematic quick-look-in turbo codes are adapted to extract and exploit redundancy left in coded data to improve channel decoding performance. Methods, based on universal compression and denoising, for extracting the governing statistical parameters for various source models are integrated into the channel decoder by also taking advantage of the code structure. Simulation results demonstrate significant performance gains over standard systematic codes that can be achieved with the new methods for a wide range of statistical models and governing parameters. In many cases, performance almost as good as that with perfect knowledge of the governing parameters is achievable.

[1]  Gil I. Shamir,et al.  Decoding of non-systematic turbo codes for stationary memoryless and piecewise stationary memoryless sequences , 2005, Data Compression Conference.

[2]  Gil I. Shamir,et al.  Universal Context Based Decoding with Low-Density Parity-Check Codes , 2007, IEEE Communications Letters.

[3]  Martin E. Hellman,et al.  Convolutional source encoding , 1975, IEEE Trans. Inf. Theory.

[4]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[5]  G. I. Shamir,et al.  Asymptotically optimal low complexity sequential lossless coding for regular piecewise stationary memoryless sources , 1999, Proceedings of the 1999 IEEE Information Theory and Communications Workshop (Cat. No. 99EX253).

[6]  Fady Alajaji,et al.  Joint source-channel turbo coding for binary Markov sources , 2006, IEEE Transactions on Wireless Communications.

[7]  Fady Alajaji,et al.  Transmission of nonuniform memoryless sources via nonsystematic turbo codes , 2004, IEEE Transactions on Communications.

[8]  Daniel J. Costello,et al.  Nonsystematic convolutional codes for sequential decoding in space applications , 1971, IEEE Transactions on Communication Technology.

[9]  Gadiel Seroussi,et al.  Linear time universal coding and time reversal of tree sources via FSM closure , 2004, IEEE Transactions on Information Theory.

[10]  Tsachy Weissman,et al.  Efficient pruning of bi-directional context trees with applications to universal denoising and compression , 2004, Information Theory Workshop.

[11]  Khalid Sayood,et al.  Use of residual redundancy in the design of joint source/channel coders , 1991, IEEE Trans. Commun..

[12]  Y. Shtarkov,et al.  The context-tree weighting method: basic properties , 1995, IEEE Trans. Inf. Theory.

[13]  Alain Glavieux,et al.  Reflections on the Prize Paper : "Near optimum error-correcting coding and decoding: turbo codes" , 1998 .

[14]  Gil I. Shamir,et al.  Context and denoising based decoding of non-systematic turbo codes for redundant data , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[15]  N. Merhav,et al.  Low complexity sequential lossless coding for piecewise stationary memoryless sources , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[16]  David J. C. MacKay,et al.  Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.

[17]  J. L. Devore A note on the observation of a Markov source through a noisy channel (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[18]  G. I. Shamir,et al.  Asymptotically optimal threshold based low complexity sequential lossless coding for piecewise stationary memoryless sources , 1999, 1999 Information Theory and Networking Workshop (Cat. No.99EX371).

[19]  Amira Alloum,et al.  Non-Systematic LDPC Codes for Redundant Data , 2006 .

[20]  Michelle Effros,et al.  Universal lossless source coding with the Burrows Wheeler transform , 1999, Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096).

[21]  D. J. Wheeler,et al.  A Block-sorting Lossless Data Compression Algorithm , 1994 .

[22]  Joseph J. Boutros,et al.  Context Based Decoding of Split-LDPC Codes. , 2006 .

[23]  D. J. Costello,et al.  Turbo codes with recursive nonsystematic quick-look-in constituent codes , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[24]  Gil I. Shamir,et al.  Design of non-systematic turbo codes for universal source controlled channel decoding , 2005, IEEE Information Theory Workshop, 2005..

[26]  Frans M. J. Willems,et al.  Context weighting for general finite-context sources , 1996, IEEE Trans. Inf. Theory.

[27]  JORMA RISSANEN,et al.  A universal data compression system , 1983, IEEE Trans. Inf. Theory.

[28]  Gil I. Shamir,et al.  CTH08-6: Context Based Decoding of Split-LDPC Codes , 2006, IEEE Globecom 2006.

[29]  Joachim Hagenauer,et al.  Source-controlled channel decoding , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[30]  Shlomo Shamai,et al.  Systematic Lossy Source/Channel Coding , 1998, IEEE Trans. Inf. Theory.

[31]  T.E. Fuja,et al.  Channel codes that exploit the residual redundancy in CELP-encoded speech , 1996, IEEE Trans. Speech Audio Process..

[32]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[33]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[34]  Javier Garcia-Frías,et al.  Joint turbo decoding and estimation of hidden Markov sources , 2001, IEEE J. Sel. Areas Commun..

[35]  J. Hagenauer,et al.  To compress or not to compress? , 1996, Proceedings of GLOBECOM'96. 1996 IEEE Global Telecommunications Conference.

[36]  N. Phamdo,et al.  Optimal Detection of Discrete Markov Sources Over Discrete Memoryless Channels - Applications to Combined Source-Channel Coding , 1993, Proceedings. IEEE International Symposium on Information Theory.

[37]  Richard Demo Souza,et al.  Non-systematic turbo coding with unequal energy allocation for nonuniform memoryless sources , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[38]  Gil I. Shamir,et al.  Universal lossless source controlled channel decoding for i.i.d. sequences , 2005, IEEE Communications Letters.

[39]  Meir Feder,et al.  A universal finite memory source , 1995, IEEE Trans. Inf. Theory.

[40]  Fady Alajaji,et al.  Turbo codes for nonuniform memoryless sources over noisy channels , 2002, IEEE Communications Letters.

[41]  Gil I. Shamir,et al.  Non-systematic low-density parity-check codes for nonuniform sources , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[42]  S. Shamai,et al.  The empirical distribution of good codes , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.

[43]  Tsachy Weissman,et al.  Channel decoding of systematically encoded unknown redundant sources , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[44]  Daniel J. Costello,et al.  Nonsystematic turbo codes , 2005, IEEE Transactions on Communications.

[45]  Jorma Rissanen,et al.  Universal coding, information, prediction, and estimation , 1984, IEEE Trans. Inf. Theory.