Interaction of isolated skyrmions with point and linear defects

Abstract The dynamic behavior of individual skyrmions is highly affected by the defects in the materials that host them. Here we develop a theory to account for the effect that defects produce over the skyrmion dynamics. The skyrmion-defect interaction mechanism is explained at an atomic level as a local modification of exchange, Dzyaloshinskii-Moriya (DM) and/or anisotropy interaction. Relevant micromagnetic magnitudes as the energy density and effective magnetic fields arising from the presence of the defect are derived. We also find analytical expressions for the forces exerted by this defect over a skyrmion within Thiele’s rigid approximation. Both point-defects as well as linear defects are considered.

[1]  R. Wiesendanger,et al.  Writing and Deleting Single Magnetic Skyrmions , 2013, Science.

[2]  S. Rohart,et al.  Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction , 2013, 1310.0666.

[3]  A. Rosch,et al.  Capturing of a magnetic skyrmion with a hole , 2014, 1411.2857.

[4]  Y. Tokura,et al.  Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.

[5]  M. Mochizuki,et al.  Current-induced skyrmion dynamics in constricted geometries. , 2013, Nature nanotechnology.

[6]  A. Hubert,et al.  The Properties of Isolated Magnetic Vortices , 1994 .

[7]  Joo-Von Kim,et al.  Current-driven skyrmion dynamics in disordered films , 2017, 1701.08357.

[8]  A. Saxena,et al.  Particle model for skyrmions in metallic chiral magnets: Dynamics, pinning, and creep , 2013, 1302.6205.

[9]  C. Reichhardt,et al.  Magnus-induced ratchet effects for skyrmions interacting with asymmetric substrates , 2015, 1505.02197.

[10]  Achim Rosch,et al.  Edge instabilities and skyrmion creation in magnetic layers , 2016, 1601.06922.

[11]  Carles Navau,et al.  Analytical trajectories of skyrmions in confined geometries: Skyrmionic racetracks and nano-oscillators , 2016 .

[12]  M. Mochizuki,et al.  Universal current-velocity relation of skyrmion motion in chiral magnets , 2012, Nature Communications.

[13]  M. Milovsevi'c,et al.  Effects of spatially engineered Dzyaloshinskii-Moriya interaction in ferromagnetic films , 2017, 1704.00770.

[14]  C. You,et al.  Thickness dependence of the interfacial Dzyaloshinskii–Moriya interaction in inversion symmetry broken systems , 2015, Nature Communications.

[15]  F. Buttner,et al.  Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy , 2016, Nature Physics.

[16]  D. Pierce,et al.  Realization of ground-state artificial skyrmion lattices at room temperature , 2015, Nature Communications.

[17]  A. Hubert,et al.  Thermodynamically stable magnetic vortex states in magnetic crystals , 1994 .

[18]  H. Fangohr,et al.  Microwave-induced dynamic switching of magnetic skyrmion cores in nanodots , 2015, 1503.02869.

[19]  W. Lew,et al.  Gateable Skyrmion Transport via Field-induced Potential Barrier Modulation , 2016, Scientific Reports.

[20]  Mark L. Vousden,et al.  Skyrmions in thin films with easy-plane magnetocrystalline anisotropy , 2016, 1602.02064.

[21]  K. Guslienko Skyrmion State Stability in Magnetic Nanodots With Perpendicular Anisotropy , 2015, IEEE Magnetics Letters.

[22]  A. Hubert,et al.  The stability of vortex-like structures in uniaxial ferromagnets , 1999 .

[23]  Yan Zhou,et al.  Control and manipulation of a magnetic skyrmionium in nanostructures , 2016, 1604.05909.

[24]  Yan Zhou,et al.  Voltage Controlled Magnetic Skyrmion Motion for Racetrack Memory , 2015, Scientific Reports.

[25]  A. Fert,et al.  Anatomy of Dzyaloshinskii-Moriya Interaction at Co/Pt Interfaces. , 2015, Physical review letters.

[26]  R. Wiesendanger,et al.  Pinning and movement of individual nanoscale magnetic skyrmions via defects , 2016, 1601.05204.

[27]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .

[28]  Anthony Arrott,et al.  Introduction to the theory of ferromagnetism , 1996 .

[29]  K. Harte Theory of Magnetization Ripple in Ferromagnetic Films , 1968 .

[30]  Electric-field-driven switching of individual magnetic skyrmions. , 2016, Nature nanotechnology.

[31]  Yan Zhou,et al.  Geometrical and physical conditions for skyrmion stability in a nanowire , 2015 .

[32]  Y. Zhou,et al.  All-magnetic control of skyrmions in nanowire by spin wave , 2015, 2015 IEEE Magnetics Conference (INTERMAG).

[33]  A. Thiele Steady-State Motion of Magnetic Domains , 1973 .

[34]  Benjamin Krueger,et al.  Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. , 2015, Nature materials.

[35]  A. Fert,et al.  Skyrmions on the track. , 2013, Nature nanotechnology.

[36]  H. Kronmüller,et al.  Micromagnetism and the Microstructure of Ferromagnetic Solids , 2003 .

[37]  Y. Tokura,et al.  Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.

[38]  Robert M. White Quantum Theory of Magnetism , 1969 .

[39]  T. Devolder,et al.  Interfacial Dzyaloshinskii-Moriya interaction in perpendicularly magnetized Pt/Co/AlO x ultrathin films measured by Brillouin light spectroscopy , 2015, 1503.00372.

[40]  J. Zang,et al.  Dynamics of an insulating Skyrmion under a temperature gradient. , 2013, Physical review letters.

[41]  Current-driven skyrmion motion along disordered magnetic tracks , 2017, 1801.05971.

[42]  A. Fert,et al.  Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. , 2013, Nature nanotechnology.

[43]  M. Jalil,et al.  Topological dynamics and current-induced motion in a skyrmion lattice , 2015, 1509.00591.

[44]  A. Locatelli,et al.  Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. , 2016, Nature nanotechnology.

[45]  S. Komineas,et al.  Skyrmion dynamics in chiral ferromagnets , 2015, 1508.04821.

[46]  You-Quan Li,et al.  A mechanism to pin skyrmions in chiral magnets , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[47]  N. Nagaosa,et al.  Colossal spin transfer torque effect on skyrmion along the edge. , 2014, Nano letters.

[48]  Carles Navau,et al.  Imprinting skyrmions in thin films by ferromagnetic and superconducting templates , 2014, 1407.0928.

[49]  J. Han,et al.  Skyrmion Generation by Current , 2012, 1203.0638.

[50]  H. Yuan,et al.  Skyrmion Creation and Manipulation by Nano-Second Current Pulses , 2016, Scientific Reports.

[51]  H. Choi,et al.  Density functional theory study of skyrmion pinning by atomic defects in MnSi , 2016, 1601.00933.

[52]  C. Reichhardt,et al.  Shapiro steps for skyrmion motion on a washboard potential with longitudinal and transverse ac drives , 2015, 1507.03023.

[53]  A. Fert,et al.  Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces , 2016, Nature.

[54]  A. Fert,et al.  Breathing modes of confined skyrmions in ultrathin magnetic dots , 2014, 1405.7414.

[55]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[56]  C. Reichhardt,et al.  Collective transport properties of driven Skyrmions with random disorder. , 2014, Physical review letters.

[57]  C. Marrows,et al.  Measuring and tailoring the Dzyaloshinskii-Moriya interaction in perpendicularly magnetized thin films , 2014 .

[58]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[59]  Kang L. Wang,et al.  Interfacial control of Dzyaloshinskii-Moriya interaction in heavy metal/ferromagnetic metal thin film heterostructures , 2016, 1611.01577.

[60]  V. Cros,et al.  A skyrmion-based spin-torque nano-oscillator , 2016, 1602.00118.

[61]  C. Reichhardt,et al.  Quantized transport for a skyrmion moving on a two-dimensional periodic substrate , 2015, 1501.04126.

[62]  Kang L. Wang,et al.  Blowing magnetic skyrmion bubbles , 2015, Science.

[63]  R. Wiesendanger,et al.  Field-dependent size and shape of single magnetic Skyrmions. , 2015, Physical review letters.

[64]  Teresa B. Ludermir,et al.  Pinning of magnetic skyrmions in a monolayer Co film on Pt(111): Theoretical characterization and exemplified utilization , 2017 .

[65]  T. Gilbert A phenomenological theory of damping in ferromagnetic materials , 2004, IEEE Transactions on Magnetics.

[66]  D. Pierce,et al.  Simultaneous control of the Dzyaloshinskii-Moriya interaction and magnetic anisotropy in nanomagnetic trilayers. , 2016, Physical review letters.

[67]  Kang L. Wang,et al.  Direct observation of the skyrmion Hall effect , 2016, Nature Physics.

[68]  G. Finocchio,et al.  A strategy for the design of skyrmion racetrack memories , 2014, Scientific Reports.

[69]  Qingfang Liu,et al.  Current-induced magnetic skyrmions oscillator , 2015 .