Calculation of Franck–Condon factors and simulation of photoelectron spectra of the HCCl− anion: Including Duschinsky effects

[1]  Qiong Su,et al.  Computational comparison of reactions of CS2 with CHX•- (X = F, Cl, and Br): Do F, Cl, and Br substitutions effect differently? , 2015 .

[2]  M. McGrath,et al.  On the stability and dynamics of (sulfuric acid) (ammonia) and (sulfuric acid) (dimethylamine) clusters: A first-principles molecular dynamics investigation , 2014 .

[3]  Z. Cui,et al.  A general analytical expression for the three-dimensional Franck–Condon integral and simulation of the photodetachment spectrum of the PO2-anion , 2013 .

[4]  Jun Liang,et al.  Substituent effects on the compounds CX1X2•− (X1, X2 = H, F, Cl, Br, I) from theoretical investigation , 2013, Structural Chemistry.

[5]  Zhongqu Wang,et al.  Franck–Condon analysis of the photoelectron spectra of HCCl−: Considering Duschinsky effects , 2012 .

[6]  Fang Wang,et al.  Optical Stark spectroscopy of the 2(0)(6) Ã1A''-X̃1A' band of chloro-methylene, HCCl. , 2012, The Journal of chemical physics.

[7]  M. McGrath,et al.  From quantum chemical formation free energies to evaporation rates , 2011 .

[8]  Z. Cui,et al.  A general analytical expression for the two-dimensional Franck–Condon integral and simulation of the photoelectron spectra of nitrogen dioxide , 2011 .

[9]  Vincenzo Barone,et al.  General Approach to Compute Vibrationally Resolved One-Photon Electronic Spectra , 2010 .

[10]  V. Barone,et al.  Computational Approach to the Study of the Lineshape of Absorption and Electronic Circular Dichroism Spectra , 2010 .

[11]  F. Yu,et al.  Interaction between common organic acids and trace nucleation species in the Earth's atmosphere. , 2010, The journal of physical chemistry. A.

[12]  Z. Cui,et al.  An algebraic formula to calculate the three-dimensional Franck–Condon factors including the Duschinsky effect , 2009 .

[13]  S. Kable,et al.  The halocarbenes: model systems for understanding the spectroscopy, dynamics and chemistry of carbenes , 2009 .

[14]  Vincenzo Barone,et al.  Fully Integrated Approach to Compute Vibrationally Resolved Optical Spectra: From Small Molecules to Macrosystems. , 2009, Journal of chemical theory and computation.

[15]  C. Ebben,et al.  High resolution study of spin-orbit mixing and the singlet-triplet gap in chlorocarbene: stimulated emission pumping spectroscopy of CH(35)Cl and CD(35)Cl. , 2008, The Journal of chemical physics.

[16]  C. Mukarakate,et al.  High resolution probe of spin-orbit coupling and the singlet-triplet gap in chlorocarbene. , 2008, The Journal of chemical physics.

[17]  P. Dagdigian,et al.  Formation of the CH fragment in the 193 nm photodissociation of CHCl. , 2008, The Journal of chemical physics.

[18]  F. Atash The deterioration of urban environments in developing countries: Mitigating the air pollution crisis in Tehran, Iran , 2007 .

[19]  Z. Cui,et al.  The geometry of the chlorine dioxide anion ClO 2 - : Ab initio calculation and Franck–Condon analysis , 2007 .

[20]  Z. Cui,et al.  Franck-Condon simulation of photoelectron spectroscopy of HOO- : Including Duschinsky effects , 2007 .

[21]  P. Dagdigian,et al.  Dynamics of the 193 nm photodissociation of dichlorocarbene. , 2006, The Journal of chemical physics.

[22]  P. Dagdigian,et al.  Photodissociation dynamics of dichlorocarbene at 248 nm. , 2006, Physical chemistry chemical physics : PCCP.

[23]  C. Mukarakate,et al.  Fluorescence excitation and single vibronic level emission spectroscopy of the A 1A"<--X 1A' system of CHCl. , 2006, The Journal of chemical physics.

[24]  Hua-Gen Yu,et al.  Hot bands in jet-cooled and ambient temperature spectra of chloromethylene. , 2006, The Journal of chemical physics.

[25]  J. Muckerman,et al.  Potential energy surfaces and vibrational energy levels of DCCl and HCCl in three low-lying states , 2006 .

[26]  A. Császár,et al.  Accurate ab initio determination of spectroscopic and thermochemical properties of mono- and dichlorocarbenes. , 2005, Physical chemistry chemical physics : PCCP.

[27]  Bor-Chen Chang,et al.  New electronic spectra of the HCCl and DCCl A-X vibronic bands. , 2004, The Journal of chemical physics.

[28]  H. Fan,et al.  Fluorescence excitation spectroscopy of the Ã1A″←X̃1A′ system of jet-cooled HCCl in the region 5150–6050 Å , 2004 .

[29]  Haiyang Li,et al.  Franck-Condon simulation of photoelectron spectroscopy of HOO− and DOO−: including Duschinsky effects , 2003 .

[30]  A. V. Sergeev,et al.  Semiclassical estimation of Franck–Condon factors and transition rates for vertical and nonvertical transitions , 2003 .

[31]  A. J. Merer,et al.  Axis-Switching and Coriolis Coupling in the Ã(010)- X∼(000) Transitions of DCCl and HCCl , 2002 .

[32]  Bor-Chen Chang,et al.  Experimental study of the DCCl X̃1A′ state vibrational structure by dispersed fluorescence spectroscopy , 2002 .

[33]  W. C. Lineberger,et al.  Naphthyl Radical: Negative Ion Photoelectron Spectroscopy, Franck−Condon Simulation, and Thermochemistry , 2001 .

[34]  Chun-Wei Chen,et al.  Dispersed fluorescence spectrum of the HC35ClÖX̃ vibronic transition , 2001 .

[35]  L. Radom,et al.  Singlet-triplet splittings and barriers to Wolff rearrangement for carbonyl carbenes. , 2001, Journal of the American Chemical Society.

[36]  G. Bacskay,et al.  Spectroscopic constants of the X̃(1A1), ã(3B1), and Ã(1B1) states of CF2, CCl2, and CBr2 and heats of formation of selected halocarbenes: An ab initio quantum chemical study , 2000 .

[37]  P. Marshall,et al.  An ab Initio Investigation of Halocarbenes , 1999 .

[38]  M. Klessinger,et al.  Calculation of the Vibronic Fine Structure in Electronic Spectra at Higher Temperatures. 1. Benzene and Pyrazine , 1998 .

[39]  M. Mckee Computational Comparison of S(N)()2 Substitution Reactions of CHX(*-)() and CH(2)()X(-)() with CH(3)()X (X = Cl, Br). Do Open-Shell and Closed-Shell Anions React Differently? , 1997, The Journal of organic chemistry.

[40]  Sears,et al.  Mid-Infrared Diode Laser Spectroscopy of X ; 1 A ' HC35 Cl , 1997, Journal of molecular spectroscopy.

[41]  T. Sears,et al.  ROTATIONALLY RESOLVED NEAR-INFRARED SPECTRUM OF THE HCCI A1A' X1A' TRANSITION , 1995 .

[42]  T. Sears,et al.  Frequency-modulation transient absorption spectrum of the HCCl Ã1A′′(0,0,0)←X̃1A′(0,0,0) transition , 1995 .

[43]  Kirk A. Peterson,et al.  Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H+H2→H2+H reaction , 1994 .

[44]  W. C. Lineberger,et al.  Negative ion photoelectron spectroscopy of halocarbene anions (HCF-, HCCl-, HCBr-, and HCI-); photoelectron angular distributions and neutral triplet excitation energies , 1992 .

[45]  G. Scuseria,et al.  Halocarbenes CHF, CHCl, and CHBr: geometries, singlet-triplet separations, and vibrational frequencies , 1986 .

[46]  S. Saito,et al.  Doppler-limited dye laser excitation spectroscopy of HCCl , 1981 .

[47]  H. Schaefer,et al.  Structure and energetics of simple carbenes methylene, fluoromethylene, chloromethylene, bromomethylene, difluoromethylene, and dichloromethylene , 1977 .

[48]  R. Hoffmann,et al.  The electronic structure of methylenes , 1968 .

[49]  D. E. Milligan,et al.  Matrix‐Isolation Study of the Reaction of Carbon Atoms with HCl. The Infrared Spectrum of the Free Radical HCCl , 1967 .

[50]  A. J. Merer,et al.  ABSORPTION SPECTRA OF HCCl AND DCCl , 1966 .

[51]  T. E. Sharp,et al.  Franck—Condon Factors for Polyatomic Molecules , 1964 .

[52]  A. Császár,et al.  Accurate ab initio determination of spectroscopic and thermochemical properties of mono- and dichlorocarbenes (Physical Chemistry Chemical Physics (2005) 7, (2881) DOI: 10.1039/b596790a) , 2008 .

[53]  Ian M. Kennedy,et al.  The health effects of combustion-generated aerosols , 2007 .

[54]  T. Schmidt,et al.  Quantum chemical studies of the potential energy surfaces and vibrational frequencies of the??(1A?),(3A?), and(1A?) states of CHCl and CFCl , 2000 .

[55]  İ. Özkan Franck-Condon principle for polyatomic molecules: Axis-switching effects and transformation of normal coordinates , 1990 .

[56]  W. C. Lineberger,et al.  Photoelectron spectroscopy of the halocarbene anions HCF−, HCCl−, HCBr−, HCI−, CF−2, and CCl−2 , 1988 .