Universally composable privacy preserving finite automata execution with low online and offline complexity

In this paper, we propose ecient protocols to obliviously execute non-deterministic and deterministic nite automata (NFA and DFA) in the arithmetic black box (ABB) model. In contrast to previous approaches, our protocols do not use expensive public-key operations, relying instead only on computation with secret-shared values. Addi- tionally, the complexity of our protocols is largely oine. In particular, if the DFA is available during the precomputation phase, then the online complexity of evaluating it on an input string requires a small constant number of operations per character. This makes our protocols highly suitable for certain outsourcing applications. Keywords. Finite automata, secure multiparty computation, arithmetic black box

[1]  Michael K. Reiter,et al.  Third-Party Private DFA Evaluation on Encrypted Files in the Cloud , 2012, ESORICS.

[2]  Keith B. Frikken Practical Private DNA String Searching and Matching through Efficient Oblivious Automata Evaluation , 2009, DBSec.

[3]  Jan Willemson,et al.  Round-Efficient Oblivious Database Manipulation , 2011, ISC.

[4]  Dan Boneh,et al.  Evaluating 2-DNF Formulas on Ciphertexts , 2005, TCC.

[5]  Andrew Chi-Chih Yao,et al.  Protocols for Secure Computations (Extended Abstract) , 1982, FOCS.

[6]  Tomas Toft,et al.  Secure Equality and Greater-Than Tests with Sublinear Online Complexity , 2013, ICALP.

[7]  Xenofontas A. Dimitropoulos,et al.  SEPIA: Privacy-Preserving Aggregation of Multi-Domain Network Events and Statistics , 2010, USENIX Security Symposium.

[8]  Babak Sadeghiyan,et al.  An Efficient Protocol for Oblivious DFA Evaluation and Applications , 2012, CT-RSA.

[9]  Ivan Damgård,et al.  Universally Composable Efficient Multiparty Computation from Threshold Homomorphic Encryption , 2003, CRYPTO.

[10]  Ivan Damgård,et al.  Asynchronous Multiparty Computation: Theory and Implementation , 2008, IACR Cryptol. ePrint Arch..

[11]  Carmit Hazay,et al.  Text Search Protocols with Simulation Based Security , 2010, Public Key Cryptography.

[12]  Ivan Damgård,et al.  A Generalisation, a Simplification and Some Applications of Paillier's Probabilistic Public-Key System , 2001, Public Key Cryptography.

[13]  Craig Gentry,et al.  Fully homomorphic encryption using ideal lattices , 2009, STOC '09.

[14]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[15]  Helger Lipmaa,et al.  An Oblivious Transfer Protocol with Log-Squared Communication , 2005, ISC.

[16]  Bell Telephone,et al.  Regular Expression Search Algorithm , 1968 .

[17]  I. Damglurd Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation , 2006 .

[18]  Dan Bogdanov,et al.  Sharemind: A Framework for Fast Privacy-Preserving Computations , 2008, ESORICS.

[19]  Tal Rabin,et al.  Simplified VSS and fast-track multiparty computations with applications to threshold cryptography , 1998, PODC '98.

[20]  Ahmad-Reza Sadeghi,et al.  TASTY: tool for automating secure two-party computations , 2010, CCS '10.

[21]  Marina Blanton,et al.  Secure Outsourcing of DNA Searching via Finite Automata , 2010, DBSec.

[22]  Stefan Katzenbeisser,et al.  Privacy preserving error resilient dna searching through oblivious automata , 2007, CCS '07.

[23]  Ken Thompson,et al.  Programming Techniques: Regular expression search algorithm , 1968, Commun. ACM.

[24]  Dan Bogdanov,et al.  High-performance secure multi-party computation for data mining applications , 2012, International Journal of Information Security.